题目链接:

hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5651

bc:http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=682&pid=1002

xiaoxin juju needs help

 Accepts: 150
 Submissions: 966
 Time Limit: 2000/1000 MS (Java/Others)
 Memory Limit: 65536/65536 K (Java/Others)
Problem Description

As we all known, xiaoxin is a brilliant coder. He knew palindromic strings when he was only a six grade student at elementry school.

This summer he was working at Tencent as an intern. One day his leader came to ask xiaoxin for help. His leader gave him a string and he wanted xiaoxin to generate palindromic strings for him. Once xiaoxin generates a different palindromic string, his leader will give him a watermelon candy. The problem is how many candies xiaoxin's leader needs to buy?

Input

This problem has multi test cases. First line contains a single integer T(T\leq 20)T(T≤20) which represents the number of test cases. For each test case, there is a single line containing a string S(1 \leq length(S) \leq 1,000)S(1≤length(S)≤1,000).

Output

For each test case, print an integer which is the number of watermelon candies xiaoxin's leader needs to buy after mod 1,000,000,0071,000,000,007.

Sample Input
3
aa
aabb
a
Sample Output
1
2
1

题解:

1、可行性:

统计每个字母出去的次数,如果有两种即以上字母出现的次数为奇数,则一定不可能排出回文串。

2、统计:

由于回文串左右两边必须相同,所以我们考虑一边就可以了(如果为奇数则正中间一个不管就和偶数情况是一样的了)。

则可以转化为排列组合问题,等价于求解: (cnt[i]代表某个字母出现的次数(cnt[i]>0) )

( )%(1e9+7)

由于涉及到除法,要求逆元:

例子:

  求a/b(mod n) 如果b与n互质,则求满足bx=1(%n)的一个解x,原式可转化为a/b*bx(%n),即a*x(%n);这样就把除法消除了。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; const int maxn = + ;
const int mod = 1e9 + ;
typedef long long LL; char str[maxn];
int n; int cnt[];
int tmp[], tot; LL b[maxn];
//预处理出阶乘
void pre() {
b[] = b[] = ;
for (int i = ; i < maxn; i++) b[i] = (b[i - ] * i) % mod;
}
//扩展的欧几里得算法求逆元
void gcd(LL a, LL b, LL &d, LL &x, LL &y) {
if (!b) {
d = a;
x = ; y = ;
}
else {
gcd(b, a%b, d, y, x);//y=x',x=y';
//x=y'; y=x'-(a/b)*y';
y -= (a / b)*x;
}
} void init() {
tot = ;
memset(cnt, , sizeof(cnt));
} int main() {
pre();
int tc;
scanf("%d", &tc);
while (tc--) {
init();
scanf("%s", str);
n = strlen(str);
for (int i = ; i < strlen(str); i++) {
cnt[str[i] - 'a']++;
}
int flag = ;
for (int i = ; i < ; i++) {
if (cnt[i] % ) flag++;
//统计一半的字母出现的次数
if (cnt[i] > ) {
tmp[tot++] = cnt[i] / ;
}
}
if (flag > ) { printf("0\n"); continue; }
LL sum = ;
for (int i = ; i < tot; i++) {
int t = tmp[i];
sum = (sum*b[t]) % mod;
}
LL d, x, y;
gcd(sum, mod, d, x, y);
//x有可能是负数,需要处理成正的。
x = (x%mod + mod) % mod;
LL ans = (b[n / ] * x) % mod;
printf("%lld\n", ans);
}
return ;
}

HDU 5651 xiaoxin juju needs help 逆元的更多相关文章

  1. hdu 5651 xiaoxin juju needs help 逆元 两种求解方式

    xiaoxin juju needs help Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  2. HDU - 5651 xiaoxin juju needs help 逆元模板

    http://acm.hdu.edu.cn/showproblem.php?pid=5651 题意:生成回文串.输出所有回文串的可能数. 题解:mod除法会损失高位,用逆元来代替除法,模板如下 ac代 ...

  3. HDU 5651 xiaoxin juju needs help 数学

    xiaoxin juju needs help 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5651 Description As we all k ...

  4. HDU 5651 xiaoxin juju needs help (组合数)

    xiaoxin juju needs helpTime Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64uSu ...

  5. HDU 5651 xiaoxin juju needs help

    组合数杨辉三角打表,这样避免了除法求逆元. #include<cstdio> #include<cstring> #include<cmath> #include& ...

  6. HDU 5651 xiaoxin juju needs help 水题一发

    分析:求一下组合数 首先,如果不止一个字符出现的次数为奇数,则结果为0. 否则,我们把每个字符出现次数除2,也就是考虑一半的情况. 那么结果就是这个可重复集合的排列数了. fact(n)/fact(a ...

  7. hdu5651 xiaoxin juju needs help(逆元)

    xiaoxin juju needs help  Accepts: 150  Submissions: 966  Time Limit: 2000/1000 MS (Java/Others)  Mem ...

  8. hdu5651 xiaoxin juju needs help (多重集的全排列+逆元)

    xiaoxin juju needs help 题意:给你一个字符串,求打乱字符后,有多少种回文串.                      (题于文末) 知识点: n个元素,其中a1,a2,··· ...

  9. HDU 5651 逆元

    xiaoxin juju needs help Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

随机推荐

  1. MySQL安装及配置

    MySQL安装 我是在Windows上安装的MySQL.首先登录MySQL的官网下载安装包. 最后献上5.5.28这个服务器的下载连接地址: http://cdn.mysql.com/Download ...

  2. 帝国CMS给会员注册加入问答验证

    修改文件有e/enews/index.php //注册 elseif($enews=="register") { if($_POST['ask']=='帝国软件') { $user ...

  3. 解决在 win10 下 vs2017 中创建 MFC 程序拖放文件接收不到 WM_DROPFILES 消息问题

    解决方案 这个问题是由于 win10 的安全机制搞的鬼,即使以管理员权限运行也不行,因为它会把 WM_DROPFILES 消息过滤掉,那怎么办呢?只需在窗口初始化 OnInitDialog() 里添加 ...

  4. Python - 魔法字符串

    ''' #capitalize() ---首字母转换为大写--- s="sslssd" v=s.capitalize(); print(v) ''' ''' #center(20, ...

  5. keil编译运行错误,缺少error:#5:#include "core_cm3.h"

    用Keil  vision5编译时出现以下错误:error:  #5: cannot open source input file "core_cm3.h": No such fi ...

  6. stm32串口通信实验,一点笔记

    第一次深入学习stm32,花了好长时间才看懂代码(主要是C语言学习不够深入),又花了段时间自己敲了一遍,然后比对教程,了解了利用中断来串口通信的设置方法. 板子是探索版f407,本实验工程把正点原子库 ...

  7. Backbone.js Basics: Bringing an App to Life with Events

    http://www.sitepoint.com/backbone-basics-events/

  8. 20155204第4次实验《Android程序设计》实验报告

    20155204第四次实验报告 一.实验内容及步骤 1.Android Stuidio的安装测试: 安装 Android Stuidio 完成Hello World, 要求修改res目录中的内容,He ...

  9. 20145207 《Java 程序设计》实验三 (敏捷开发与XP实践)实验报告

    <Java 程序设计>实验三 (敏捷开发与XP实践)实验报告 目录 改变 敏捷开发与XP实践实验要求 实验成果 课后思考 改变 修改了之前仅仅是贴了图片,连代码都没粘的状态.增加了自己的思 ...

  10. 【转载】从零实现3D图像引擎:(1)环境配置与项目框架

    原文:从零实现3D图像引擎:(1)环境配置与项目框架 0. 要学懂3D程序设计,必然要精通3D相关的线性代数.3D几何.复分析等相关知识,我也因为如此才开始这个博客系列的写作,不自己实现,就不是自己的 ...