Linux内存管理-高端内存(一)
高端内存是指物理地址大于 896M 的内存。对于这样的内存,无法在“内核直接映射空间”进行映射。
为什么?
因为“内核直接映射空间”最多只能从 3G 到 4G,只能直接映射 1G 物理内存,对于大于 1G 的物理内存,无能为力。
实际上,“内核直接映射空间”也达不到 1G, 还得留点线性空间给“内核动态映射空间” 呢。
因此,Linux 规定“内核直接映射空间” 最多映射 896M 物理内存。
对于高端内存,可以通过 alloc_page() 或者其它函数获得对应的 page,但是要想访问实际物理内存,还得把 page 转为线性地址才行(为什么?想想 MMU 是如何访问物理内存的),也就是说,我们需要为高端内存对应的 page 找一个线性空间,这个过程称为高端内存映射。
高端内存映射有三种方式:
1、映射到“内核动态映射空间”
这种方式很简单,因为通过 vmalloc() ,在“内核动态映射空间”申请内存的时候,就可能从高端内存获得页面(参看 vmalloc 的实现),因此说高端内存有可能映射到“内核动态映射空间” 中。
2、永久内核映射
如果是通过 alloc_page() 获得了高端内存对应的 page,如何给它找个线性空间?
内核专门为此留出一块线性空间,从 PKMAP_BASE 到 FIXADDR_START ,用于映射高端内存。在 2.4 内核上,这个地址范围是 4G-8M 到 4G-4M 之间。这个空间起叫“内核永久映射空间”或者“永久内核映射空间”
这个空间和其它空间使用同样的页目录表,对于内核来说,就是 swapper_pg_dir,对普通进程来说,通过 CR3 寄存器指向。
通常情况下,这个空间是 4M 大小,因此仅仅需要一个页表即可,内核通过来 pkmap_page_table 寻找这个页表。
通过 kmap(), 可以把一个 page 映射到这个空间来
由于这个空间是 4M 大小,最多能同时映射 1024 个 page。因此,对于不使用的的 page,应该及时从这个空间释放掉(也除映射关就是解系),通过 kunmap() ,可以把一个 page 对应的线性地址从这个空间释放出来。
3、临时映射
内核在 FIXADDR_START 到 FIXADDR_TOP 之间保留了一些线性空间用于特殊需求。这个空间称为“固定映射空间”
在这个空间中,有一部分用于高端内存的临时映射。
这块空间具有如下特点:
1、 每个 CPU 占用一块空间
2、 在每个 CPU 占用的那块空间中,又分为多个小空间,每个小空间大小是 1 个 page,每个小空间用于一个目的,这些目的定义在 kmap_types.h 中的 km_type 中。
当要进行一次临时映射的时候,需要指定映射的目的,根据映射目的,可以找到对应的小空间,然后把这个空间的地址作为映射地址。这意味着一次临时映射会导致以前的映射被覆盖。
通过 kmap_atomic() 可实现临时映射。
下图简单简单表达如何对高端内存进行映射
Linux内存线性地址空间大小为4GB,分为2个部分:用户空间部分(通常是3G)和内核空间部分(通常是1G)。在此我们主要关注内核地址空间部分。
内核通过内核页全局目录来管理所有的物理内存,由于线性地址前3G空间为用户使用,内核页全局目录前768项(刚好3G)除0、1两项外全部为0,后256项(1G)用来管理所有的物理内存。内核页全局目录在编译时静态地定义为swapper_pg_dir数组,该数组从物理内存地址0x101000处开始存放。
由图可见,内核线性地址空间部分从PAGE_OFFSET(通常定义为3G)开始,为了将内核装入内存,从PAGE_OFFSET开始8M线性地址用来映射内核所在的物理内存地址(也可以说是内核所在虚拟地址是从PAGE_OFFSET开始的);接下来是mem_map数组,mem_map的起始线性地址与体系结构相关,比如对于UMA结构,由于从PAGE_OFFSET开始16M线性地址空间对应的16M物理地址空间是DMA区,mem_map数组通常开始于PAGE_OFFSET+16M的线性地址;从PAGE_OFFSET开始到VMALLOC_START – VMALLOC_OFFSET的线性地址空间直接映射到物理内存空间(一一对应影射,物理地址<==>线性地址-PAGE_OFFSET),这段区域的大小和机器实际拥有的物理内存大小有关,这儿VMALLOC_OFFSET在X86上为8M,主要用来防止越界错误;在内存比较小的系统上,余下的线性地址空间(还要再减去空白区即VMALLOC_OFFSET)被vmalloc()函数用来把不连续的物理地址空间映射到连续的线性地址空间上,在内存比较大的系统上,vmalloc()使用从VMALLOC_START到VMALLOC_END(也即PKMAP_BASE减去2页的空白页大小PAGE_SIZE(解释VMALLOC_END))的线性地址空间,此时余下的线性地址空间(还要再减去2页的空白区即VMALLOC_OFFSET)又可以分成2部分:第一部分从PKMAP_BASE到FIXADDR_START用来由kmap()函数来建立永久映射高端内存;第二部分,从FIXADDR_START到FIXADDR_TOP,这是一个固定大小的临时映射线性地址空间,(引用:Fixed virtual addresses are needed for subsystems that need to know the virtual address at compile time such as the APIC),在X86体系结构上,FIXADDR_TOP被静态定义为0xFFFFE000,此时这个固定大小空间结束于整个线性地址空间最后4K前面,该固定大小空间大小是在编译时计算出来并存储在__FIXADDR_SIZE变量中。
正是由于vmalloc()使用区、kmap()使用区及固定大小区(kmap_atomic()使用区)的存在才使ZONE_NORMAL区大小受到限制,由于内核在运行时需要这些函数,因此在线性地址空间中至少要VMALLOC_RESERVE大小的空间。VMALLOC_RESERVE的大小与体系结构相关,在X86上,VMALLOC_RESERVE定义为128M,这就是为什么ZONE_NORMAL大小通常是16M到896M的原因。
Linux内存管理-高端内存(一)的更多相关文章
- linux arm的高端内存映射
linux arm的高端内存映射(1) vmalloc 高端内存映射 与高端映射对立的是低端映射或所谓直接映射,内核中有关变量定义它们的它们的分界点,全局变量high_memory,该变量定义在m ...
- kmalloc分配物理内存与高端内存映射--Linux内存管理(十八)
1 前景回顾 1.1 内核映射区 尽管vmalloc函数族可用于从高端内存域向内核映射页帧(这些在内核空间中通常是无法直接看到的), 但这并不是这些函数的实际用途. 重要的是强调以下事实 : 内核提供 ...
- Linux内存描述之高端内存--Linux内存管理(五)
1. 内核空间和用户空间 过去,CPU的地址总线只有32位, 32的地址总线无论是从逻辑上还是从物理上都只能描述4G的地址空间(232=4Gbit),在物理上理论上最多拥有4G内存(除了IO地址空间, ...
- Linux内存描述之高端内存–Linux内存管理(五)
服务器体系与共享存储器架构 日期 内核版本 架构 作者 GitHub CSDN 2016-06-14 Linux-4.7 X86 & arm gatieme LinuxDeviceDriver ...
- 高端内存映射之kmap_atomic固定映射--Linux内存管理(二十一)
1 固定映射 1.1 数据结构 linux高端内存中的临时内存区为固定内存区的一部分, 对于固定内存在linux内核中有下面描述 x86 arm arm64 arch/x86/include/asm/ ...
- 高端内存映射之vmalloc分配内存中不连续的页--Linux内存管理(十九)
1 内存中不连续的页的分配 根据上文的讲述, 我们知道物理上连续的映射对内核是最好的, 但并不总能成功地使用. 在分配一大块内存时, 可能竭尽全力也无法找到连续的内存块. 在用户空间中这不是问题,因为 ...
- Linux内存管理-高端内存(二)
在支持MMU的32位处理器平台上,Linux系统中的物理存储空间和虚拟存储空间的地址范围分别都是从0x00000000到0xFFFFFFFF,共4GB,但物理存储空间与虚拟存储空间布局完全不同.Lin ...
- 高端内存映射之kmap持久内核映射--Linux内存管理(二十)
1 高端内存与内核映射 尽管vmalloc函数族可用于从高端内存域向内核映射页帧(这些在内核空间中通常是无法直接看到的), 但这并不是这些函数的实际用途. 重要的是强调以下事实 : 内核提供了其他函数 ...
- 【转载】linux内核笔记之高端内存映射
原文:linux内核笔记之高端内存映射 在32位的系统上,内核使用第3GB~第4GB的线性地址空间,共1GB大小.内核将其中的前896MB与物理内存的0~896MB进行直接映射,即线性映射,将剩余的1 ...
随机推荐
- BZOJ2987:Earthquake(类欧几里德算法)
Sol 设 \(n=\lfloor\frac{c}{a}\rfloor\) 问题转化为求 \[\sum_{i=0}^{n}\lfloor\frac{c-ax}{b}\rfloor+1=\sum_{i= ...
- 为什么排版引擎解析 CSS 选择器时一定要从右往左解析?
首先我们要看一下选择器的「解析」是在何时进行的. 主要参考这篇「 How browsers work」(http://taligarsiel.com/Projects/howbrowserswork1 ...
- 浏览器根对象window之值为数值的属性
1. number属性 1.1 length length 属性返回在当前窗口中frames的数量(包括IFRAMES). 该属性值与window.frames.length属性值相等. 1.2 in ...
- 自定义View和ViewGroup(有这一篇就够了)
为了扫除学习中的盲点,尽可能多的覆盖Android知识的边边角角,决定对自定义View做一个稍微全面一点的使用方法总结,在内容上面并没有什么独特的地方,其他大神们的博客上面基本上都有讲这方面的内容,如 ...
- Docker-commit镜像提交
docker commit:提交容器副本使之成为一个新的镜像 docker commit -a="作者名" -m="提交的描述信息" 容器id 新建的镜像名称: ...
- Java中执行.exe文件
public static void main(String args[]){ try { String command ="notepad"; // 笔记本 Process ch ...
- 通过u盘启动盘重装系统
前言:一直想通过u盘启动盘给旧本装个win7,但是发现网上完整的教程很少.这里分享给大家我重装的一些步骤和遇到的问题. 前期准备: 1.我们要准备一个容量在4G以上的U盘. 2.我们要将U盘中的重要数 ...
- 最优化 KKT条件
对于约束优化问题: 拉格朗日公式: 其KKT条件为: 求解 x.α.β 其中β*g(x)为互补松弛条件 KKT条件是使一组解成为最优解的必要条件,当原问题是凸问题的时候,KKT条件也是充分条件.
- Asp.Net MVC Identity 2.2.1 使用技巧(四)
使用用户管理器之用户管理 一.建立模型 1.在Models文件夹上点右键 >添加>类 类的名称自定,我用AdminViewModels命名的. 2.更改模板自建的AdminView ...
- composer随笔
composer dump-autoload 生成autoload.php文件