转自:http://www.cnblogs.com/shitouer/archive/2013/02/20/hbase-hfile-bulk-load.html

一、这种方式有很多的优点:

1. 如果我们一次性入库hbase巨量数据,处理速度慢不说,还特别占用Region资源, 一个比较高效便捷的方法就是使用 “Bulk Loading”方法,即HBase提供的HFileOutputFormat类。

2. 它是利用hbase的数据信息按照特定格式存储在hdfs内这一原理,直接生成这种hdfs内存储的数据格式文件,然后上传至合适位置,即完成巨量数据快速入库的办法。配合mapreduce完成,高效便捷,而且不占用region资源,增添负载。

二、这种方式也有很大的限制:

1. 仅适合初次数据导入,即表内数据为空,或者每次入库表内都无数据的情况。

2. HBase集群与Hadoop集群为同一集群,即HBase所基于的HDFS为生成HFile的MR的集群(额,咋表述~~~)

三、接下来一个demo,简单介绍整个过程。

1. 生成HFile部分

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
package zl.hbase.mr;
 
import java.io.IOException;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat;
import org.apache.hadoop.hbase.mapreduce.KeyValueSortReducer;
import org.apache.hadoop.hbase.mapreduce.SimpleTotalOrderPartitioner;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
 
import zl.hbase.util.ConnectionUtil;
 
public class HFileGenerator {
 
    public static class HFileMapper extends
            Mapper<LongWritable, Text, ImmutableBytesWritable, KeyValue> {
        @Override
        protected void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            String line = value.toString();
            String[] items = line.split(",", -1);
            ImmutableBytesWritable rowkey = new ImmutableBytesWritable(
                    items[0].getBytes());
 
            KeyValue kv = new KeyValue(Bytes.toBytes(items[0]),
                    Bytes.toBytes(items[1]), Bytes.toBytes(items[2]),
                    System.currentTimeMillis(), Bytes.toBytes(items[3]));
            if (null != kv) {
                context.write(rowkey, kv);
            }
        }
    }
 
    public static void main(String[] args) throws IOException,
            InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration();
        String[] dfsArgs = new GenericOptionsParser(conf, args)
                .getRemainingArgs();
 
        Job job = new Job(conf, "HFile bulk load test");
        job.setJarByClass(HFileGenerator.class);
 
        job.setMapperClass(HFileMapper.class);
        job.setReducerClass(KeyValueSortReducer.class);
 
        job.setMapOutputKeyClass(ImmutableBytesWritable.class);
        job.setMapOutputValueClass(Text.class);
 
        job.setPartitionerClass(SimpleTotalOrderPartitioner.class);
 
        FileInputFormat.addInputPath(job, new Path(dfsArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(dfsArgs[1]));
 
        HFileOutputFormat.configureIncrementalLoad(job,
                ConnectionUtil.getTable());
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

生成HFile程序说明:

①. 最终输出结果,无论是map还是reduce,输出部分key和value的类型必须是: < ImmutableBytesWritable, KeyValue>或者< ImmutableBytesWritable, Put>。

②. 最终输出部分,Value类型是KeyValue 或Put,对应的Sorter分别是KeyValueSortReducer或PutSortReducer。

③. MR例子中job.setOutputFormatClass(HFileOutputFormat.class); HFileOutputFormat只适合一次对单列族组织成HFile文件。

④. MR例子中HFileOutputFormat.configureIncrementalLoad(job, table);自动对job进行配置。SimpleTotalOrderPartitioner是需要先对key进行整体排序,然后划分到每个reduce中,保证每一个reducer中的的key最小最大值区间范围,是不会有交集的。因为入库到HBase的时候,作为一个整体的Region,key是绝对有序的。

⑤. MR例子中最后生成HFile存储在HDFS上,输出路径下的子目录是各个列族。如果对HFile进行入库HBase,相当于move HFile到HBase的Region中,HFile子目录的列族内容没有了。

2. HFile入库到HBase

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package zl.hbase.bulkload;
 
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles;
import org.apache.hadoop.util.GenericOptionsParser;
 
import zl.hbase.util.ConnectionUtil;
 
public class HFileLoader {
 
    public static void main(String[] args) throws Exception {
        String[] dfsArgs = new GenericOptionsParser(
                ConnectionUtil.getConfiguration(), args).getRemainingArgs();
        LoadIncrementalHFiles loader = new LoadIncrementalHFiles(
                ConnectionUtil.getConfiguration());
        loader.doBulkLoad(new Path(dfsArgs[0]), ConnectionUtil.getTable());
    }
 
}

通过HBase中 LoadIncrementalHFiles的doBulkLoad方法,对生成的HFile文件入库

MapReduce生成HFile入库到HBase的更多相关文章

  1. MapReduce生成HFile入库到HBase及源码分析

    http://blog.pureisle.net/archives/1950.html

  2. 非mapreduce生成Hfile,然后导入hbase当中

    转自:http://blog.csdn.net/stark_summer/article/details/44174381 未实验 最近一个群友的boss让研究hbase,让hbase的入库速度达到5 ...

  3. hbase 学习(十二)非mapreduce生成Hfile,然后导入hbase当中

    最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式, ...

  4. 通过生成HFile导入HBase

    要实现DataFrame通过HFile导入HBase有两个关键步骤 第一个是要生成Hfile第二个是HFile导入HBase 测试DataFrame数据来自mysql,如果对读取mysql作为Data ...

  5. 用MR生成HFile文件格式后,数据批量导入HBase

    环境hadoop cdh5.4.7 hbase1.0.0 测试数据: topsid  uid roler_num typ 10 111111 255 0 在Hbase 创建t2数据库: create ...

  6. 生成HFile文件后倒入数据出现Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.hbase.filter.Filter

    数据导入的时候出现: at java.lang.Class.getDeclaredMethods0(Native Method) at java.lang.Class.privateGetDeclar ...

  7. 实现HBase增量入库(HBase删除自定义时间戳行数据)

    目录 1. 背景描述 2. 问题描述 3. 解决方案 1. 背景描述 目前在做音乐推荐项目,前期做排序模型优化,任务是使用模型对用户的历史音乐进行排序,有6800多万个用户,约40G的用户数据,使用H ...

  8. 用mapreduce读取hdfs数据到hbase上

    hdfs数据到hbase过程 将HDFS上的文件中的数据导入到hbase中 实现上面的需求也有两种办法,一种是自定义mr,一种是使用hbase提供好的import工具 hbase先创建好表   cre ...

  9. 【hbase】——HBase 写优化之 BulkLoad 实现数据快速入库

    1.为何要 BulkLoad 导入?传统的 HTableOutputFormat 写 HBase 有什么问题? 我们先看下 HBase 的写流程: 通常 MapReduce 在写HBase时使用的是 ...

随机推荐

  1. Linux内核(2) - 分析内核源码如何入手(上)

    透过现象看本质,兽兽们无非就是一些人体艺术展示.同样往本质里看过去,学习内核,就是学习内核的源代码,任何内核有关的书籍都是基于内核,而又不高于内核的. 既然要学习内核源码,就要经常对内核代码进行分析, ...

  2. php-fpm 启动参数及重要配置详解(转)

    约定几个目录 /usr/local/php/sbin/php-fpm /usr/local/php/etc/php-fpm.conf /usr/local/php/etc/php.ini 一,php- ...

  3. 【转】SQL SERVER 获取存储过程返回值

    1.OUPUT参数返回值 CREATE PROCEDURE [dbo].[nb_order_insert]( @o_buyerid int , @o_id bigint OUTPUT ) AS BEG ...

  4. gcc自有的define语法,解决变量多次自加的问题

    如果定义一个这样的宏: #define MAX(a,b) ((a)>(b)?(a):(b)) int main(void){ int a=5,b=10; MAX(a++,b++); printf ...

  5. verilog 不可综合语句

    转自http://bbs.ednchina.com/BLOG_ARTICLE_1770084.HTM 基础知识:verilog 不可综合语句  (1)所有综合工具都支持的结构:always,assig ...

  6. 网络编程----------SOCKET编程实现简单的TCP协议

    首先我们须要大致了解TCP的几点知识: 1.TCP的特点:面向连接的可靠性传输 2.TCP的三次握手建立连接和四次挥手释放连接.但为什么TCP要三次握手建立连接呢? 答:由于两次握手无法保证可靠性.若 ...

  7. C++ HOJ 猴子分桃

    [题目描写叙述] 老猴子辛苦了一辈子,给那群小猴子们留下了一笔巨大的財富--一大堆桃子.老猴子决定把这些桃子分给小猴子. 第一个猴子来了,它把桃子分成五堆,五堆一样多,但还多出一个.它把剩下的一个留给 ...

  8. JDK自带工具之问题排查场景示例

    最近看到了大量关于java性能调优.故障排查的文章,自己也写了一篇< Java调优经验谈 >.接着此篇文章,其实一直打算写写一些常用调优工具以及它们的惯常用法的.后来在http://jav ...

  9. 将struts的jar包拷贝到WEB-INF/lib导致eclipse中配置好的javadoc失效

    我通过这个步骤导入了struts的jar包并且配置好了javadoc,且亲测可用: http://www.cnblogs.com/qrlozte/p/3173805.html 但是当我把struts的 ...

  10. java 多线程3:Thread类中的静态方法

    Thread类中的静态方法 Thread类中的静态方法表示操作的线程是"正在执行静态方法所在的代码块的线程".为什么Thread类中要有静态方法,这样就能对CPU当前正在运行的线程 ...