MapReduce生成HFile入库到HBase
转自:http://www.cnblogs.com/shitouer/archive/2013/02/20/hbase-hfile-bulk-load.html
一、这种方式有很多的优点:
1. 如果我们一次性入库hbase巨量数据,处理速度慢不说,还特别占用Region资源, 一个比较高效便捷的方法就是使用 “Bulk Loading”方法,即HBase提供的HFileOutputFormat类。
2. 它是利用hbase的数据信息按照特定格式存储在hdfs内这一原理,直接生成这种hdfs内存储的数据格式文件,然后上传至合适位置,即完成巨量数据快速入库的办法。配合mapreduce完成,高效便捷,而且不占用region资源,增添负载。
二、这种方式也有很大的限制:
1. 仅适合初次数据导入,即表内数据为空,或者每次入库表内都无数据的情况。
2. HBase集群与Hadoop集群为同一集群,即HBase所基于的HDFS为生成HFile的MR的集群(额,咋表述~~~)
三、接下来一个demo,简单介绍整个过程。
1. 生成HFile部分
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
package zl.hbase.mr; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.KeyValue; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat; import org.apache.hadoop.hbase.mapreduce.KeyValueSortReducer; import org.apache.hadoop.hbase.mapreduce.SimpleTotalOrderPartitioner; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; import zl.hbase.util.ConnectionUtil; public class HFileGenerator { public static class HFileMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, KeyValue> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] items = line.split( "," , - 1 ); ImmutableBytesWritable rowkey = new ImmutableBytesWritable( items[ 0 ].getBytes()); KeyValue kv = new KeyValue(Bytes.toBytes(items[ 0 ]), Bytes.toBytes(items[ 1 ]), Bytes.toBytes(items[ 2 ]), System.currentTimeMillis(), Bytes.toBytes(items[ 3 ])); if ( null != kv) { context.write(rowkey, kv); } } } public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException { Configuration conf = new Configuration(); String[] dfsArgs = new GenericOptionsParser(conf, args) .getRemainingArgs(); Job job = new Job(conf, "HFile bulk load test" ); job.setJarByClass(HFileGenerator. class ); job.setMapperClass(HFileMapper. class ); job.setReducerClass(KeyValueSortReducer. class ); job.setMapOutputKeyClass(ImmutableBytesWritable. class ); job.setMapOutputValueClass(Text. class ); job.setPartitionerClass(SimpleTotalOrderPartitioner. class ); FileInputFormat.addInputPath(job, new Path(dfsArgs[ 0 ])); FileOutputFormat.setOutputPath(job, new Path(dfsArgs[ 1 ])); HFileOutputFormat.configureIncrementalLoad(job, ConnectionUtil.getTable()); System.exit(job.waitForCompletion( true ) ? 0 : 1 ); } } |
生成HFile程序说明:
①. 最终输出结果,无论是map还是reduce,输出部分key和value的类型必须是: < ImmutableBytesWritable, KeyValue>或者< ImmutableBytesWritable, Put>。
②. 最终输出部分,Value类型是KeyValue 或Put,对应的Sorter分别是KeyValueSortReducer或PutSortReducer。
③. MR例子中job.setOutputFormatClass(HFileOutputFormat.class); HFileOutputFormat只适合一次对单列族组织成HFile文件。
④. MR例子中HFileOutputFormat.configureIncrementalLoad(job, table);自动对job进行配置。SimpleTotalOrderPartitioner是需要先对key进行整体排序,然后划分到每个reduce中,保证每一个reducer中的的key最小最大值区间范围,是不会有交集的。因为入库到HBase的时候,作为一个整体的Region,key是绝对有序的。
⑤. MR例子中最后生成HFile存储在HDFS上,输出路径下的子目录是各个列族。如果对HFile进行入库HBase,相当于move HFile到HBase的Region中,HFile子目录的列族内容没有了。
2. HFile入库到HBase
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
package zl.hbase.bulkload; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles; import org.apache.hadoop.util.GenericOptionsParser; import zl.hbase.util.ConnectionUtil; public class HFileLoader { public static void main(String[] args) throws Exception { String[] dfsArgs = new GenericOptionsParser( ConnectionUtil.getConfiguration(), args).getRemainingArgs(); LoadIncrementalHFiles loader = new LoadIncrementalHFiles( ConnectionUtil.getConfiguration()); loader.doBulkLoad( new Path(dfsArgs[ 0 ]), ConnectionUtil.getTable()); } } |
通过HBase中 LoadIncrementalHFiles的doBulkLoad方法,对生成的HFile文件入库
MapReduce生成HFile入库到HBase的更多相关文章
- MapReduce生成HFile入库到HBase及源码分析
http://blog.pureisle.net/archives/1950.html
- 非mapreduce生成Hfile,然后导入hbase当中
转自:http://blog.csdn.net/stark_summer/article/details/44174381 未实验 最近一个群友的boss让研究hbase,让hbase的入库速度达到5 ...
- hbase 学习(十二)非mapreduce生成Hfile,然后导入hbase当中
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式, ...
- 通过生成HFile导入HBase
要实现DataFrame通过HFile导入HBase有两个关键步骤 第一个是要生成Hfile第二个是HFile导入HBase 测试DataFrame数据来自mysql,如果对读取mysql作为Data ...
- 用MR生成HFile文件格式后,数据批量导入HBase
环境hadoop cdh5.4.7 hbase1.0.0 测试数据: topsid uid roler_num typ 10 111111 255 0 在Hbase 创建t2数据库: create ...
- 生成HFile文件后倒入数据出现Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.hbase.filter.Filter
数据导入的时候出现: at java.lang.Class.getDeclaredMethods0(Native Method) at java.lang.Class.privateGetDeclar ...
- 实现HBase增量入库(HBase删除自定义时间戳行数据)
目录 1. 背景描述 2. 问题描述 3. 解决方案 1. 背景描述 目前在做音乐推荐项目,前期做排序模型优化,任务是使用模型对用户的历史音乐进行排序,有6800多万个用户,约40G的用户数据,使用H ...
- 用mapreduce读取hdfs数据到hbase上
hdfs数据到hbase过程 将HDFS上的文件中的数据导入到hbase中 实现上面的需求也有两种办法,一种是自定义mr,一种是使用hbase提供好的import工具 hbase先创建好表 cre ...
- 【hbase】——HBase 写优化之 BulkLoad 实现数据快速入库
1.为何要 BulkLoad 导入?传统的 HTableOutputFormat 写 HBase 有什么问题? 我们先看下 HBase 的写流程: 通常 MapReduce 在写HBase时使用的是 ...
随机推荐
- Linux内核(2) - 分析内核源码如何入手(上)
透过现象看本质,兽兽们无非就是一些人体艺术展示.同样往本质里看过去,学习内核,就是学习内核的源代码,任何内核有关的书籍都是基于内核,而又不高于内核的. 既然要学习内核源码,就要经常对内核代码进行分析, ...
- php-fpm 启动参数及重要配置详解(转)
约定几个目录 /usr/local/php/sbin/php-fpm /usr/local/php/etc/php-fpm.conf /usr/local/php/etc/php.ini 一,php- ...
- 【转】SQL SERVER 获取存储过程返回值
1.OUPUT参数返回值 CREATE PROCEDURE [dbo].[nb_order_insert]( @o_buyerid int , @o_id bigint OUTPUT ) AS BEG ...
- gcc自有的define语法,解决变量多次自加的问题
如果定义一个这样的宏: #define MAX(a,b) ((a)>(b)?(a):(b)) int main(void){ int a=5,b=10; MAX(a++,b++); printf ...
- verilog 不可综合语句
转自http://bbs.ednchina.com/BLOG_ARTICLE_1770084.HTM 基础知识:verilog 不可综合语句 (1)所有综合工具都支持的结构:always,assig ...
- 网络编程----------SOCKET编程实现简单的TCP协议
首先我们须要大致了解TCP的几点知识: 1.TCP的特点:面向连接的可靠性传输 2.TCP的三次握手建立连接和四次挥手释放连接.但为什么TCP要三次握手建立连接呢? 答:由于两次握手无法保证可靠性.若 ...
- C++ HOJ 猴子分桃
[题目描写叙述] 老猴子辛苦了一辈子,给那群小猴子们留下了一笔巨大的財富--一大堆桃子.老猴子决定把这些桃子分给小猴子. 第一个猴子来了,它把桃子分成五堆,五堆一样多,但还多出一个.它把剩下的一个留给 ...
- JDK自带工具之问题排查场景示例
最近看到了大量关于java性能调优.故障排查的文章,自己也写了一篇< Java调优经验谈 >.接着此篇文章,其实一直打算写写一些常用调优工具以及它们的惯常用法的.后来在http://jav ...
- 将struts的jar包拷贝到WEB-INF/lib导致eclipse中配置好的javadoc失效
我通过这个步骤导入了struts的jar包并且配置好了javadoc,且亲测可用: http://www.cnblogs.com/qrlozte/p/3173805.html 但是当我把struts的 ...
- java 多线程3:Thread类中的静态方法
Thread类中的静态方法 Thread类中的静态方法表示操作的线程是"正在执行静态方法所在的代码块的线程".为什么Thread类中要有静态方法,这样就能对CPU当前正在运行的线程 ...