python学习笔记(四):pandas基础
pandas 基础
serise
import pandas as pd
from pandas import Series, DataFrame
obj = Series([4, -7, 5, 3])
obj
0 4
1 -7
2 5
3 3
dtype: int64
obj.values
array([ 4, -7, 5, 3], dtype=int64)
obj.index
RangeIndex(start=0, stop=4, step=1)
obj[[1,3]]
# 跳着选取数据
1 -7
3 3
dtype: int64
obj[1:3]
1 -7
2 5
dtype: int64
pd.isnull(obj)
0 False
1 False
2 False
3 False
dtype: bool
- reindex可以用来插值
obj.reindex(range(5), method = 'ffill')
0 4
1 -7
2 5
3 3
4 3
dtype: int64
- 标签切片是闭区间的
dataframe
data = {'state': ['asd','qwe','sdf','ert'],
'year': [2000, 2001, 2002, 2003],
'pop': [1.5,1.7,3.6,2.4]}
data = DataFrame(data)
data
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
pop | state | year | |
---|---|---|---|
0 | 1.5 | asd | 2000 |
1 | 1.7 | qwe | 2001 |
2 | 3.6 | sdf | 2002 |
3 | 2.4 | ert | 2003 |
data.year
# 比r里提取列要方便点
0 2000
1 2001
2 2002
3 2003
Name: year, dtype: int64
data['debt'] = range(4)
data
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
pop | state | year | debt | |
---|---|---|---|---|
0 | 1.5 | asd | 2000 | 0 |
1 | 1.7 | qwe | 2001 | 1 |
2 | 3.6 | sdf | 2002 | 2 |
3 | 2.4 | ert | 2003 | 3 |
- index是不能修改的
a = data.index
a[1] = 6
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-9-57677294f950> in <module>()
1 a = data.index
----> 2 a[1] = 6
F:\Anaconda\lib\site-packages\pandas\core\indexes\base.py in __setitem__(self, key, value)
1668
1669 def __setitem__(self, key, value):
-> 1670 raise TypeError("Index does not support mutable operations")
1671
1672 def __getitem__(self, key):
TypeError: Index does not support mutable operations
data.columns
Index(['pop', 'state', 'year', 'debt'], dtype='object')
- .ix标签索引功能,输入行和列
- 不加.ix只能选取其中的某列或某行,不能列与行同时选取
data[:3]
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
pop | state | year | debt | |
---|---|---|---|---|
0 | 1.5 | asd | 2000 | 0 |
1 | 1.7 | qwe | 2001 | 1 |
2 | 3.6 | sdf | 2002 | 2 |
data.ix[:,:3]
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
pop | state | year | |
---|---|---|---|
0 | 1.5 | asd | 2000 |
1 | 1.7 | qwe | 2001 |
2 | 3.6 | sdf | 2002 |
3 | 2.4 | ert | 2003 |
- 删除某列用drop,axis = 0表示行,1表示列
- 删除后原数据不变
data.drop(0,axis=0)
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
pop | state | year | debt | |
---|---|---|---|---|
1 | 1.7 | qwe | 2001 | 1 |
2 | 3.6 | sdf | 2002 | 2 |
3 | 2.4 | ert | 2003 | 3 |
data.drop('year', axis=1)
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
pop | state | debt | |
---|---|---|---|
0 | 1.5 | asd | 0 |
1 | 1.7 | qwe | 1 |
2 | 3.6 | sdf | 2 |
3 | 2.4 | ert | 3 |
data
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
pop | state | year | debt | |
---|---|---|---|---|
0 | 1.5 | asd | 2000 | 0 |
1 | 1.7 | qwe | 2001 | 1 |
2 | 3.6 | sdf | 2002 | 2 |
3 | 2.4 | ert | 2003 | 3 |
import numpy as np
df = DataFrame(np.arange(9).reshape(3, 3))
df
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
0 | 1 | 2 | |
---|---|---|---|
0 | 0 | 1 | 2 |
1 | 3 | 4 | 5 |
2 | 6 | 7 | 8 |
- applymap()可以对dataframe每一个元素运用函数
- apply()可以对每一维数组运用函数
df.applymap(lambda x: '%.2f' % x)
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
0 | 1 | 2 | |
---|---|---|---|
0 | 0.00 | 1.00 | 2.00 |
1 | 3.00 | 4.00 | 5.00 |
2 | 6.00 | 7.00 | 8.00 |
data.sort_values(by='pop')
# 对某一列排序
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
pop | state | year | debt | |
---|---|---|---|---|
0 | 1.5 | asd | 2000 | 0 |
1 | 1.7 | qwe | 2001 | 1 |
3 | 2.4 | ert | 2003 | 3 |
2 | 3.6 | sdf | 2002 | 2 |
data.describe()
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
pop | year | debt | |
---|---|---|---|
count | 4.000000 | 4.000000 | 4.000000 |
mean | 2.300000 | 2001.500000 | 1.500000 |
std | 0.948683 | 1.290994 | 1.290994 |
min | 1.500000 | 2000.000000 | 0.000000 |
25% | 1.650000 | 2000.750000 | 0.750000 |
50% | 2.050000 | 2001.500000 | 1.500000 |
75% | 2.700000 | 2002.250000 | 2.250000 |
max | 3.600000 | 2003.000000 | 3.000000 |
df.isin([1])
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
0 | 1 | 2 | |
---|---|---|---|
0 | False | True | False |
1 | False | False | False |
2 | False | False | False |
- None、NaN会被当作NA处理
- df.shape不加括号相当于dim()
df.shape
(3, 3)
- dropna删除缺失值
df.ix[:1, :1] = None
df
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
0 | 1 | 2 | |
---|---|---|---|
0 | NaN | NaN | 2 |
1 | NaN | NaN | 5 |
2 | 6.0 | 7.0 | 8 |
- 填充缺失值可以调用字典,不同行添加不同值
df.fillna({0:11, 1:22})
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
0 | 1 | 2 | |
---|---|---|---|
0 | 11.0 | 22.0 | 2 |
1 | 11.0 | 22.0 | 5 |
2 | 6.0 | 7.0 | 8 |
df
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
0 | 1 | 2 | |
---|---|---|---|
0 | NaN | NaN | 2 |
1 | NaN | NaN | 5 |
2 | 6.0 | 7.0 | 8 |
df.fillna({0:11, 1:22}, inplace=True)
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
0 | 1 | 2 | |
---|---|---|---|
0 | 11.0 | 22.0 | 2 |
1 | 11.0 | 22.0 | 5 |
2 | 6.0 | 7.0 | 8 |
df
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
0 | 1 | 2 | |
---|---|---|---|
0 | 11.0 | 22.0 | 2 |
1 | 11.0 | 22.0 | 5 |
2 | 6.0 | 7.0 | 8 |
- inplace修改对象不产生副本
python学习笔记(四):pandas基础的更多相关文章
- python学习笔记四 迭代器,生成器,装饰器(基础篇)
迭代器 __iter__方法返回一个迭代器,它是具有__next__方法的对象.在调用__next__方法时,迭代器会返回它的下一个值,若__next__方法调用迭代器 没有值返回,就会引发一个Sto ...
- Python学习笔记一(基础信息)
目录 输入输出 数据类型和变量 整数 浮点数 字符串 布尔值 空值 变量 常量 小结 欢迎关注我的博客我在马路边 说明:此笔记不是从零开始,在学习的过程中感觉需要记录一些比较重要和需要重复浏览的信息, ...
- PYTHON 爬虫笔记四:正则表达式基础用法
知识点一:正则表达式详解及其基本使用方法 什么是正则表达式 正则表达式对子符串操作的一种逻辑公式,就是事先定义好的一些特定字符.及这些特定字符的组合,组成一个‘规则字符串’,这个‘规则字符串’用来表达 ...
- 吴裕雄--python学习笔记:爬虫基础
一.什么是爬虫 爬虫:一段自动抓取互联网信息的程序,从互联网上抓取对于我们有价值的信息. 二.Python爬虫架构 Python 爬虫架构主要由五个部分组成,分别是调度器.URL管理器.网页下载器.网 ...
- Python学习笔记(四)Python函数的参数
Python的函数除了正常使用的必选参数外,还可以使用默认参数.可变参数和关键字参数. 默认参数 基本使用 默认参数就是可以给特定的参数设置一个默认值,调用函数时,有默认值得参数可以不进行赋值,如: ...
- Java基础学习笔记四 Java基础语法
数组 数组的需求 现在需要统计某公司员工的工资情况,例如计算平均工资.最高工资等.假设该公司有50名员工,用前面所学的知识完成,那么程序首先需要声明50个变量来分别记住每位员工的工资,这样做会显得很麻 ...
- Python学习笔记四
一.装饰器 1.知识储备 函数对象 函数可以被引用 函数可以当参数传递 返回值可以是函数 可以当作容器的元素 def func1(): print (666) def func2(): print ( ...
- Python学习笔记四:面向对象编程
一:定义类并创建实例 Python中定义类,通过class关键字,类名开头大写,参数列表为所继承的父类.如果没有需要明确继承的类,则继承object. 使用类来创建对象,只需 类名+() 形式即可,p ...
- python学习笔记(四) 思考和准备
一.zip的坑 zip()函数接收多个可迭代数列,将数列中的元素重新组合,在3.0中返回迭代器指向 数列首地址,在3.0以下版本返回List类型的列表数列.我用的是3.5版本python, 所以zip ...
- 【Python学习笔记】Pandas库之DataFrame
1 简介 DataFrame是Python中Pandas库中的一种数据结构,它类似excel,是一种二维表. 或许说它可能有点像matlab的矩阵,但是matlab的矩阵只能放数值型值(当然matla ...
随机推荐
- Exchange Server 2007 多名称证书配置
Exchange Server 2007上配置多名称证书,有两种方式,一种是通过Exchange Management Shell利用命令行工具进行创建:另一种是通过证书管理器控制台进行创建.本文将介 ...
- 使用事务和SqlBulkCopy批量插入数据
SqlBulkCopy是.NET Framework 2.0新增的类,位于命名空间System.Data.SqlClient下,主要提供把其他数据源的数据有效批量的加载到SQL Server表中的功能 ...
- January 07 2017 Week 1st Saturday
Procrastination is the thief of time. 拖延乃是光阴之窃贼. My parents always tell me that things ought to be d ...
- 请问在JAVA编程中什么叫耦合?什么又叫解藕? 悬赏分:0 - 解决时间:2008-3-8 12:55
模块一的实现依赖于模块二,更改模块二后,模块一也得更改,那么二者就有耦合.修改程序,使得更改模块二后,模块一不受影响,那么就叫解藕 请问<java编程思想>中的“完全解藕”如何理解,和实现 ...
- [BZOJ 1033][ZJOI2008]杀蚂蚁antbuster
1033: [ZJOI2008]杀蚂蚁antbuster Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1200 Solved: 507[Submi ...
- Angular Reactive Form-响应式表单验证
内建验证规则 Angular中提供了一些內建的Validators,这些验证规则可以在Template-Driven或Reactive表单中使用. 目前 Angular 支持的内建 validator ...
- Guava包学习---Lists
Guava包是我最近项目中同事推荐使用的,是google推出的库.里面的功能非常多,包括了集合.缓存.原生类型支持.并发库.通用注解.字符串处理.IO等.我们项目中使用到了guava依赖,但是实际上只 ...
- shuf 按行打乱文本命令
长选项必须使用的参数对于短选项时也是必需使用的. -e, --echo 将每个参数视为输入行 -i, --input-range=LO-HI 将LO 到HI 的每个数字视为输入行 -n, --head ...
- [TJOI2018]智力竞赛
题目 发现我们需要最大化最小值,基本是二分了 那么我们二分出来一个值我们将小于等于这个值的都删去,现在的问题变成了如何用\(n+1\)条路径覆盖这张图 这不最小路径覆盖吗 于是我就忘了最小路径覆盖怎么 ...
- spring整合mongo及调用
spring整合mongo(maven工程下): 1.web.xml文件中配置需要加载的配置文件: <listener> <listener-class>org.springf ...