洛谷 P1344 [USACO4.4]追查坏牛奶Pollutant Control
题目描述
你第一天接手三鹿牛奶公司就发生了一件倒霉的事情:公司不小心发送了一批有三聚氰胺的牛奶。很不幸,你发现这件事的时候,有三聚氰胺的牛奶已经进入了送货网。这个送货网很大,而且关系复杂。你知道这批牛奶要发给哪个零售商,但是要把这批牛奶送到他手中有许多种途径。送货网由一些仓库和运输卡车组成,每辆卡车都在各自固定的两个仓库之间单向运输牛奶。在追查这些有三聚氰胺的牛奶的时候,有必要保证它不被送到零售商手里,所以必须使某些运输卡车停止运输,但是停止每辆卡车都会有一定的经济损失。你的任务是,在保证坏牛奶不送到零售商的前提下,制定出停止卡车运输的方案,使损失最小。
输入输出格式
输入格式:
第一行: 两个整数N(2<=N<=32)、M(0<=M<=1000),
N表示仓库的数目,M表示运输卡车的数量。仓库1代 表发货工厂,仓库N代表有三聚氰胺的牛奶要发往的零售商。 第2..M+1行:
每行3个整数Si,Ei,Ci。其中Si,Ei表示这 辆卡车的出发仓库,目的仓库。Ci(0 <= C i <= 2,000,000)
表示让这辆卡车停止运输的损失。
输出格式:
两个整数C、T:C表示最小的损失,T表示在损失最小的前提下,最少要停止的卡车数。
输入输出样例
4 5
1 3 100
3 2 50
2 4 60
1 2 40
2 3 80
60 1
说明
题目翻译来自NOCOW。
USACO Training Section 4.4
Solution:
简单讲,本题给出了边的权值,要求最小的代价使得1和n不连通。这不就是最小割嘛!我们直接把1当作S,n当作T。
但因为本题既要输出最小割的值又要输出割的边数,前者好求关键是后者如何去求更简单,容易想到我们可以直接建两次图,一次按原边权建图跑最大流求得最小割,再按边权为1建图跑最大流求割的边数,这是一种思路;
当然我们完全可以换种思路用一次最大流搞定,只需建图时将边权w=w*a+1(w为本来的边权,a为大于1000的数),这样我们能求得最大流ans,则最小割的值为ans/a,割的边数为ans%a。这很容易理解,但是还是解释一下:因为最小割的边集中有w1+w2+w3…+wn=ans(这个ans为本来的最小割),所以必然有w1*a+w2*a+w3*a…+wn*a=ans*a,于是必然有w1*a+1+w2*a+1+w3*a+1…+wn*a+1=ans*a+k(k为最小割的边数,k<=m<=1000),这样就很明显了,因为边数m不大于1000,所以k的最大值为1000,我们只要使设定的a的值大于1000,那么按上述方法建图,跑出的最大流除以a就是最小割的值ans,最大流模a就是最小割的边数k。
代码:
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define debug printf("%d %s\n",__LINE__,__FUNCTION__)
using namespace std;
const ll N=,inf=,mod=;
ll n,m,s,t,h[],dis[],cnt=;
ll ans;
struct edge{
ll to,net;ll v;
}e[N];
il void add(ll u,ll v,ll w)
{
e[++cnt].to=v,e[cnt].net=h[u],e[cnt].v=w,h[u]=cnt;
e[++cnt].to=u,e[cnt].net=h[v],e[cnt].v=,h[v]=cnt;
}
queue<ll>q;
il bool bfs()
{
memset(dis,-,sizeof(dis));
q.push(s),dis[s]=;
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=h[u];i;i=e[i].net)
if(dis[e[i].to]==-&&e[i].v>)dis[e[i].to]=dis[u]+,q.push(e[i].to);
}
return dis[t]!=-;
}
il ll dfs(ll u,ll op)
{
if(u==t)return op;
ll flow=,used=;
for(int i=h[u];i;i=e[i].net)
{
int v=e[i].to;
if(dis[v]==dis[u]+&&e[i].v>)
{
used=dfs(v,min(op,e[i].v));
if(!used)continue;
flow+=used,op-=used;
e[i].v-=used,e[i^].v+=used;
if(!op)break;
}
}
if(!flow)dis[u]=-;
return flow;
}
int main()
{
scanf("%lld%lld",&n,&m);s=,t=n;
ll u,v;ll w;
for(int i=;i<=m;i++)
{
scanf("%lld%lld%lld",&u,&v,&w);
add(u,v,w*mod+);
}
while(bfs())ans+=dfs(s,inf);
printf("%lld %lld\n",ans/mod,ans%mod);
return ;
}
洛谷 P1344 [USACO4.4]追查坏牛奶Pollutant Control的更多相关文章
- 洛谷 P1344 [USACO4.4]追查坏牛奶Pollutant Control 解题报告
P1344 [USACO4.4]追查坏牛奶Pollutant Control 题目描述 你第一天接手三鹿牛奶公司就发生了一件倒霉的事情:公司不小心发送了一批有三聚氰胺的牛奶.很不幸,你发现这件事的时候 ...
- 洛谷 1344 [USACO4.4]追查坏牛奶Pollutant Control——最大流
题目:https://www.luogu.org/problemnew/show/P1344 那个边数的限制,只要把边权乘1001再+1即可.乘1001是因为有1000条边,这样流量小的不会因为边数多 ...
- 【题解】Luogu P1344 [USACO4.4]追查坏牛奶Pollutant Control
原题传送门 看到这种题,应该一眼就能知道考的是最小割 没错这题就是如此简单,跑两遍最大流(最小割=最大流),一次边权为题目所给,一次边权为1 还有一种优化,优化后只需跑一次最大流,把每条边的权值改成w ...
- luogu P1344 [USACO4.4]追查坏牛奶Pollutant Control
传送门 要求断掉某些边使得两个点不连通,显然是最小割 但是要求选的边数尽量少,,, 可以考虑修改边权(容量),即把边权\(c\)改成\(c*(m+1)+1\) 没了 // luogu-judger-e ...
- [USACO4.4]追查坏牛奶Pollutant Control
题目链接:ヾ(≧∇≦*)ゝ Solution: 第一问很好解决,根据网络流:最大流=最小割定理,我们可以轻松求出. 至于第二问,我们不妨把每一条边乘上一个大于1000的数再加上1. 这样的话,对于最小 ...
- USACO Section 4.4 追查坏牛奶Pollutant Control
http://www.luogu.org/problem/show?pid=1344 题目描述 你第一天接手三鹿牛奶公司就发生了一件倒霉的事情:公司不小心发送了一批有三聚氰胺的牛奶.很不幸,你发现这件 ...
- 洛谷 P1344 追查坏牛奶Pollutant Control —— 最小割
题目:https://www.luogu.org/problemnew/show/P1344 就是求最小割: 但是还要边数最小,所以把边权都*1001+1,这样原来流量部分是*1001,最大流一样的不 ...
- [USACO Section 4.4]追查坏牛奶Pollutant Control (最小割)
题目链接 Solution 一眼看过去就是最小割,但是要求割边最少的最小的割. 所以要用骚操作... 建边的时候每条边权 \(w = w * (E+1) + 1;\) 那么这样建图跑出来的 \(max ...
- 洛谷P2751 [USACO4.2]工序安排Job Processing
P2751 [USACO4.2]工序安排Job Processing 18通过 78提交 题目提供者该用户不存在 标签 难度普及+/提高 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 一家工 ...
随机推荐
- Java读取Propertity文件
读取propertity 文件其实很简单,就是每次容易搞错文件路径,今天刚好项目又用到了,顺便记下来,以便以后参考: 目录如下: 代码如下: package com.infs.exam.process ...
- elasticsearch对某段时间范围内按时间间隔进行统计
{ "query" : { "constant_score" : { "filter" : { "range" : { ...
- Jmeter接口测试(一) Jmeter简介
一.Jmeter介绍 (一)Jmeter简介 Apache JMeter 是 Apache 组织的开放源代码项目,是一个纯 Java 桌面应用,用于压力测试和性能测试.它最初被设计用于 Web 应用测 ...
- Ubuntu 安装python后,安装python-dev
1.通常情况下: sudo apt install python-dev 或者 在 sudo apt install python 命令下安装应该也附带了 python-dev 上述 pyhthon ...
- socket_tcp协议_loadrunner测试
1.lrs_create_socket("socket0", "TCP", "RemoteHost=127.0.0.1:8888", Lrs ...
- hive的内置函数和自定义函数
一.内置函数 1.一般常用函数 .取整函数 round() 当传入第二个参数则为精度 bround() 银行家舍入法:为5时,前一位为偶则舍,奇则进. .向下取整 floor() .向上取整 ceil ...
- hdfs遍历文件方法
import org.apache.commons.lang.StringUtils; import org.apache.hadoop.conf.Configuration; import org. ...
- lxd&openstack-lxd源码剖析
lxd:https://linuxcontainers.org/lxd/,目标是融入到openstack体系被管理,像虚拟机一样被管理使用.从如下图可知,并非走的是libvirt-lxc路线,而是no ...
- 观察者模式——Java实例
一.定义 观察者模式(有时又被称为模型-视图(View)模式.源-收听者(Listener)模式或从属者模式)是软件设计模式的一种.观察者模式定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个 ...
- ES6的新特性(7)——函数的扩展
函数的扩展 函数参数的默认值 基本用法 ES6 之前,不能直接为函数的参数指定默认值,只能采用变通的方法. function log(x, y) { y = y || 'World'; console ...