洛谷P3390

题目背景

矩阵快速幂

题目描述

给定n*n的矩阵A,求A^k

输入输出格式

输入格式:

第一行,n,k

第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素

输出格式:

输出A^k

共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7

输入输出样例

输入样例#1:

2 1
1 1
1 1
输出样例#1:

1 1
1 1

说明

n<=100, k<=10^12, |矩阵元素|<=1000

算法:矩阵快速幂

矩阵快速幂模板:

 program rrr(input,output);
const
cs=;
var
a,c,ans:array[..,..]of int64;
n,i,j,k:longint;
m:int64;
begin
assign(input,'r.in');assign(output,'r.out');reset(input);rewrite(output);
readln(n,m);
for i:= to n do for j:= to n do read(a[i,j]);
fillchar(ans,sizeof(ans),);
for i:= to n do ans[i,i]:=;
while m> do
begin
if m mod = then
begin
//c:=ans*a;
for i:= to n do for j:= to n do begin c[i,j]:=;for k:= to n do c[i,j]:=(c[i,j]+ans[i,k]*a[k,j]) mod cs; end;
//ans:=c;
for i:= to n do for j:= to n do ans[i,j]:=c[i,j];
end;
//c:=a*a;
for i:= to n do for j:= to n do begin c[i,j]:=;for k:= to n do c[i,j]:=(c[i,j]+a[i,k]*a[k,j]) mod cs; end;
//a:=c;
for i:= to n do for j:= to n do a[i,j]:=c[i,j];
m:=m>>;
end;
for i:= to n do begin for j:= to n do write(ans[i,j],' ');writeln; end;
close(input);close(output);
end.

矩阵快速幂模板(pascal)的更多相关文章

  1. POJ3070 矩阵快速幂模板

    题目:http://poj.org/problem?id=3070 矩阵快速幂模板.mod写到乘法的定义部分就行了. 别忘了 I ( ) 和 i n i t ( ) 要传引用! #include< ...

  2. 51nod1113(矩阵快速幂模板)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1113 题意:中文题诶- 思路:矩阵快速幂模板 代码: #inc ...

  3. luoguP3390(矩阵快速幂模板题)

    链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...

  4. hdu 2604 矩阵快速幂模板题

    /* 矩阵快速幂: 第n个人如果是m,有f(n-1)种合法结果 第n个人如果是f,对于第n-1和n-2个人有四种ff,fm,mf,mm其中合法的只有fm和mm 对于ffm第n-3个人只能是m那么有f( ...

  5. POJ 3070 Fibonacci 矩阵快速幂模板

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18607   Accepted: 12920 Descr ...

  6. HDU6395-Sequence 矩阵快速幂+除法分块 矩阵快速幂模板

    目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门  原题目描述在最下面. Solution ...

  7. Final Destination II -- 矩阵快速幂模板题

    求f[n]=f[n-1]+f[n-2]+f[n-3] 我们知道 f[n] f[n-1] f[n-2]         f[n-1]  f[n-2]  f[n-3]         1    1    ...

  8. hdu 1575 求一个矩阵的k次幂 再求迹 (矩阵快速幂模板题)

    Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有 ...

  9. POJ3070 斐波那契数列递推 矩阵快速幂模板题

    题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include< ...

随机推荐

  1. 20155337 《Java程序设计》实验三(敏捷开发与XP实践)实验报告

    20155337 <Java程序设计>实验三(敏捷开发与XP实践)实验报告 实验内容 XP基础 XP核心实践 相关工具 实验要求 1.没有Linux基础的同学建议先学习<Linux基 ...

  2. 成都Uber优步司机奖励政策(4月11日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. Yii2 使用 faker 生成假数据

    测试过程中有时候需要生成大量的假数据,faker 是一个生成假数据的类库,可以生成姓名,电话,IP地址,密码,ISBN等等你能想到的或者你想不到的各种类型的假数据. Yii2.0已经集成该类库,不用再 ...

  4. SIM_AT_Command

    下面是GET请求 AT+HTTPPARA? 查询设置的Para命令 AT+SAPBR=1,1 (模块启动后设置一次即可)OK AT+HTTPINIT (初始化)OK AT+HTTPPARA=CONTE ...

  5. XAF-如何修改内置的编辑器(Property Editor)

    本示例演示在web/win中给 日期选择控制显示出一个时钟及修改时间的控件.效果如下: 如果你装了XAF在这个路径中已经有了这个示例: %PUBLIC%\Documents\DevExpress De ...

  6. Java接口获取系统配置信息

    Java获取当前运行系统的配置信息 接口:System.getProperty() 参数 描述 java.version Java运行时环境版本 java.vendor Java运行时环境供应商 ja ...

  7. Docker入门与实践之 docker安装与了解

    一.Docker 概述 Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源.Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后 ...

  8. ES6的新特性(9)——对象的扩展

    对象的扩展 属性的简洁表示法 ES6 允许直接写入变量和函数,作为对象的属性和方法.这样的书写更加简洁. const foo = 'bar'; const baz = {foo}; baz // {f ...

  9. USACO 3.3.1 Riding the Fences 骑马修栅栏(欧拉回路)

    Description 农民John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个一个栅栏.你必须编一个程 ...

  10. Android开发第二阶段(3)

    今天:对闹钟代码的按钮事件进行了添加和修改.对监听器的相关应用也有了进一步的了解和深入. 明天:对主界面的代码的优化比如对按钮位置的调节等细节处理.