# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int n, k, d[N], c[N], s[N], w[N], bg[N], ed[N], seg[N<<], tag[N<<];
VI v[N];
LL dp[N]; void _init(){
FOR(i,,n) {
int l=d[i]-s[i], r=d[i]+s[i];
l=lower_bound(d+,d+n+,l)-d; r=lower_bound(d+,d+n+,r)-d;
if (d[r]>d[i]+s[i]) --r;
bg[i]=l; ed[i]=r; v[r].pb(i);
}
}
void push_up(int p){seg[p]=min(seg[p<<],seg[p<<|]);}
void push_down(int p){
if (!tag[p]) return ;
seg[p]+=tag[p]; tag[p<<]+=tag[p]; tag[p<<|]+=tag[p]; tag[p]=;
}
void init(int p, int l, int r){
if (l<r) {
int mid=(l+r)>>;
tag[p]=; init(lch); init(rch); push_up(p);
}
else seg[p]=dp[l], tag[p]=;
}
int query(int p, int l, int r, int L, int R){
push_down(p);
if (L>r||R<l) return INF;
if (L<=l&&R>=r) return seg[p];
int mid=(l+r)>>;
return min(query(lch,L,R),query(rch,L,R));
}
void update(int p, int l, int r, int L, int R, int val){
push_down(p);
if (L>r||R<l) return ;
if (L<=l&&R>=r) tag[p]=val, push_down(p);
else {
int mid=(l+r)>>;
update(lch,L,R,val); update(rch,L,R,val); push_up(p);
}
}
int main ()
{
scanf("%d%d",&n,&k);
FOR(i,,n) scanf("%d",d+i); FOR(i,,n) scanf("%d",c+i);
FOR(i,,n) scanf("%d",s+i); FOR(i,,n) scanf("%d",w+i);
++n; ++k; d[n]=INF; w[n]=INF;
_init();
LL ans, tmp=;
FOR(i,,n) {
dp[i]=tmp+c[i];
FO(j,,v[i].size()) tmp+=w[v[i][j]];
}
ans=dp[n];
FOR(i,,k) {
init(,,n);
FOR(j,,n) {
dp[j]=(j>?query(,,n,,j-):)+c[j];
FO(l,,v[j].size()) if (bg[v[j][l]]>) update(,,n,,bg[v[j][l]]-,w[v[j][l]]);
}
ans=min(ans,dp[n]);
}
printf("%lld\n",ans);
return ;
}

BZOJ 1835 基站选址(DP+线段树)的更多相关文章

  1. BZOJ 1835 基站选址(线段树优化DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1835 题意:有N个村庄坐落在一条直线上,第 i(i>1)个村庄距离第1个村庄的距离 ...

  2. 【BZOJ1835】基站选址(线段树)

    [BZOJ1835]基站选址(线段树) 题面 BZOJ 题解 考虑一个比较暴力的\(dp\) 设\(f[i][j]\)表示建了\(i\)个基站,最后一个的位置是\(j\)的最小代价 考虑如何转移\(f ...

  3. BZOJ 1835 [ZJOI2010]base 基站选址:线段树优化dp

    传送门 题意 有 $ n $ 个村庄在一排直线上,现在要建造不超过 $ K $ 个通讯基站,基站只能造在村庄处. 第 $ i $ 个村庄距离第 $ 1 $ 个村庄的距离为 $ D_i $ .在此建造基 ...

  4. BZOJ1835: [ZJOI2010]base 基站选址【线段树优化DP】

    Description 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄 ...

  5. 【洛谷2605】[ZJOI2010] 基站选址(线段树维护DP)

    点此看题面 大致题意: 有\(n\)个村庄,每个村庄有\(4\)个属性:\(D_i\)表示与村庄\(1\)的距离,\(C_i\)表示建立基站的费用,\(S_i\)表示能将其覆盖的建基站范围,\(W_i ...

  6. 2018.11.06 bzoj1835: [ZJOI2010]base 基站选址(线段树优化dp)

    传送门 二分出每个点不需要付www贡献的范围,然后可以推出转移式子: f[i][j]=f[i−1][k]+value(k+1,j)+c[i]f[i][j]=f[i-1][k]+value(k+1,j) ...

  7. 【Bzoj 1835 基站选址】

    基站选址的区间里隐藏着DP优化的机密…… 分析:       不论是做过乘积最大还是石子合并,或者是其他的入门级别的区间DP题目的人呐,大米并认为读题后就能够轻松得出一个简洁明了的Dp转移方程.    ...

  8. BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)

    BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...

  9. BZOJ 1264 基因匹配(DP+线段树)

    很有意思的一道题啊. 求两个序列的最大公共子序列.保证每个序列中含有1-n各5个. 如果直接LCS显然是TLE的.该题与普通的LCS不同的是每个序列中含有1-n各5个. 考虑LCS的经典DP方程.dp ...

随机推荐

  1. 每天一个linux命令(1):ln 命令

    每天一个linux命令(35):ln 命令 ln 是linux中又一个非常重要命令,它的功能是为某一个文件在另外一个位置建立一个同步的链接.当我们需要在不同的目录,用到相同的文件时,我们不需要在 每一 ...

  2. win10 64位redis的安装和测试

    步骤记录: 1.官网没有redis64位的版本,在git开源项目上找到64位的可用版本 https://www.cnblogs.com/tommy-huang/p/6093813.html 这里有下载 ...

  3. PostgreSQL的streaming replication

    磨砺技术珠矶,践行数据之道,追求卓越价值回到上一级页面: PostgreSQL集群方案相关索引页     回到顶级页面:PostgreSQL索引页[作者 高健@博客园  luckyjackgao@gm ...

  4. day9 匿名函数 lambda

    1. list列表排序 #### sort排序 nums = [,,,,,] nums.sort() print(nums) ### 结果 [, , , , , ] ######## 逆序 In [] ...

  5. SaltStack入门篇(五)之salt-ssh的使用以及LAMP状态设计部署

    1.salt-ssh的使用 官方文档:https://docs.saltstack.com/en/2016.11/topics/ssh/index.html ()安装salt-ssh [root@li ...

  6. 修改表的字段顺序(mysql)

    ALTER TABLE 表名 CHANGE 字段名 字段名 int not null default 1 AFTER 它前面的字段;

  7. 「日常训练」Magic Stones(CodeForces-1110E)

    题意 给定两个数组c和t,可以对c数组中的任何元素变换\(c_i\)​成\(c_{i+1}+c_{i-1}-c_i\)​,问c数组在若干次变换后能否变换成t数组. 分析 这种魔法题目我是同样的没做过. ...

  8. mybatis拦截器使用

    目录 mybatis 拦截器接口Interceptor spring boot + mybatis整合 创建自己的拦截器MyInterceptor @Intercepts注解 mybatis拦截器入门 ...

  9. Pairs Forming LCM LightOJ - 1236 素因子分解

    Find the result of the following code: long long pairsFormLCM( int n ) {    long long res = 0;    fo ...

  10. 学习GIT 你只要这一篇(转)

    http://blog.csdn.net/afei__/article/details/51476529 安装之后第一步 安装 Git 之后,你要做的第一件事情就是去配置你的名字和邮箱,因为每一次提交 ...