一般求最小生成树的时候,最流行的是Kruskal算法,一种基于拟阵证明的贪心,通过给边排序再扫描一次边集,利用并查集优化得到,复杂度为\(O(ElogE)\)。另一种用得比较少的是Prim算法,利用优先队列实现做到\(O(ElogV)\)。

在翻ZYQN博客的时候,看见他写的位运算最小生成树中提到了Borůvka算法,于是学了一下。

算法

Borůvka算法是1926年发明的,是最早发明的最小生成树算法,复杂度为\(O(ElogV)\)。

算法思想非常简单。初始时每个点都是一颗不同的树,每次遍历边表,找距离每棵树最近的另一棵树,并把它们连起来。可以发现,每一次一棵树都与另一棵树连接起来,所以每次树的数量都至少减少到一半,所以这样操作的次数为\(O(logV)\)次。每次我们遍历边表,连接所用的时间为\(O(E+V*\alpha (V))\),所以总复杂度为\(O(ElogV)\),实现起来也非常简单。

代码

参考bzoj2429的题解

最小生成树-Borůvka算法的更多相关文章

  1. Codeforces.888G.Xor-MST(Borůvka算法求MST 贪心 Trie)

    题目链接 \(Description\) 有一张\(n\)个点的完全图,每个点的权值为\(a_i\),两个点之间的边权为\(a_i\ xor\ a_j\).求该图的最小生成树. \(n\leq2*10 ...

  2. Borůvka (Sollin) 算法求 MST 最小生成树

    基本思路: 用定点数组记录每个子树的最近邻居. 对于每一条边进行处理: 如果这条边连成的两个顶点同属于一个集合,则不处理,否则检测这条边连接的两个子树,如果是连接这两个子树的最小边,则更新 (合并). ...

  3. Kruskal vs Borůvka

    做了个对比.Borůvka算法对于稠密图效果特别好.这两个都是求生成森林的算法.Prim+heap+tarjan过于难写不写了. V=200,E=1000 Kruskal method 4875048 ...

  4. Borůvka algorithm

    Borůvka algorithm 我好无聊啊,直接把wiki的算法介绍翻译一下把. wiki关于Borůvka algorithm的链接:链接 Borůvka algorithm是一个在所有边权都是 ...

  5. 【做题】CSA72G - MST and Rectangles——Borůvka&线段树

    原文链接 https://www.cnblogs.com/cly-none/p/CSA72G.html 题意:有一个\(n \times n\)的矩阵\(A\),\(m\)次操作,每次在\(A\)上三 ...

  6. 最小生成树的Kruskal算法实现

    最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...

  7. 最小生成树之Prim算法,Kruskal算法

    Prim算法 1 .概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gr ...

  8. 数据结构--画画--最小生成树(Prim算法)

    通信网络的最小生成树配置,它是使右侧的生成树值并最小化.经常使用Prim和Kruskal算法.看Prim算法:以防万一N={V,{E}}它是在通信网络,TE它是N设置边的最小生成树.从算法U={u0} ...

  9. C++编程练习(10)----“图的最小生成树“(Prim算法、Kruskal算法)

    1.Prim 算法 以某顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树. 2.Kruskal 算法 直接寻找最小权值的边来构建最小生成树. 比较: Kruskal 算法主要是针对边来展开,边数 ...

随机推荐

  1. 20155308 2016-2017-2 《Java程序设计》实验3

    20155308 2016-2017-2 <Java程序设计>实验3 实验内容 XP基础 XP核心实践 相关工具 实验步骤 (一)敏捷开发与XP 敏捷开发是一种以人为核心.迭代.循序渐进的 ...

  2. 洛谷P1514 引水入城

    洛谷P1514 引水入城 原题链接 一道好题...细节真多 第一次提交90分,然后就GG了,不知从何改起 其实比较简单吧... 首先,一个点的水流向最后一排,一定可以形成一个区间. 不行的话肯定GG ...

  3. C#之#if #endif的简单用法

    有时候我们看到别人的代码中有#if #endif,其实这是通过不同版本来选择运行哪段代码,和咱们的if,else是一样的.下面看下简单的用法 #if DEBUG txt_display.Text = ...

  4. 【转】自动化测试 - Appium + Python史上最全最简环境搭建步骤

    一,为什么是Appium借一张图: 1.1 Appium优点 l  开源 l  跨架构:NativeApp.Hybird App.Web App l  跨设备:Android.iOS.Firefox ...

  5. dalao自动报表邮件2.0

    经过昨天的修改优化后,dalao收到了不是“木马”的邮件,欣慰地点了点头,“不错,不错,这几张表设计的简洁明了,看着有货!不过呀,,,这些表的数据太多了一点,十几天的数据一大溜,能不能再简洁一点,做一 ...

  6. JavaScript学习笔记(三)——对象

    第四章 理解对象 1 说明 对象的状态:属性,行为:方法: 对象定义放在花括号内: 用冒号分隔属性名和属性值: 用逗号分隔属性名和属性值对,包括方法: 最后一个属性值后面不加逗号: 属性名可以是任何字 ...

  7. NUMA 体系架构

    NUMA 体系架构 SMP 体系架构 NUMA 体系架构 NUMA 结构基本概念 Openstack flavor NUMA 策略 Nova 实现 NUMA 流程 1. SMP 体系架构 CPU 计算 ...

  8. asp.net 设计条码code 11的问题

    前一段时间思考了一些条码生成的问题,其实条码也可以说是加密的文件显示. 一个条码首先要有规定 比如code 11 又 1234567890 - 这11个字符组成 而1 又用 5码 表示 "1 ...

  9. 3. IP地址转换函数

    一.字符串表示的IP地址需要被转化为整数(二进制数)方能使用 IPv4地址:点分十进制字符串 IPv6地址:十六进制字符串 有时(如记录日志),我们则要把整数(二进制数)表示的IP地址转化为可读的字符 ...

  10. Scrum立会报告+燃尽图(十月二十八日总第十九次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2288 项目地址:https://git.coding.net/zhang ...