Description

    有一天,贝茜无聊地坐在蚂蚁洞前看蚂蚁们进进出出地搬运食物.很快贝茜发现有些蚂蚁长得几乎一模一样,于是她认为那些蚂蚁是兄弟,也就是说它们是同一个家族里的成员.她也发现整个蚂蚁群里有时只有一只出来觅食,有时是几只,有时干脆整个蚁群一起出来.这样一来,蚂蚁们出行觅食时的组队方案就有很多种.作为一头有数学头脑的奶牛,贝茜注意到整个蚂蚁群由T(1≤T≤1000)个家族组成,她将这些家族按1到T依次编号.编号为i的家族里有Ni(1≤Ni≤100)只蚂蚁.同一个家族里的蚂蚁可以认为是完全相同的.
    如果一共有S,S+1….,B(1≤S≤B≤A)只蚂蚁一起出去觅食,它们一共能组成多少种不同的队伍呢?注意:只要两支队伍中所包含某个家族的蚂蚁数不同,我们就认为这两支队伍不同.由于贝茜无法分辨出同一家族的蚂蚁,所以当两支队伍中所包含的所有家族的蚂蚁数都相同时,即使有某个家族换了几只蚂蚁出来,贝茜也会因为看不出不同而把它们认为是同一支队伍.    比如说,有个由3个家族组成的蚂蚁群里一共有5只蚂蚁,它们所属的家族分别为1,1,2,2,3.于是出去觅食时它们有以下几种组队方案:
  ·1只蚂蚁出去有三种组合:(1)(2)(3)
  ·2只蚂蚁出去有五种组合:(1,1)(1,2)(1,3)(2,2)(2,3)
  ·3只蚂蚁出去有五种组合:(1,1,2)(1,1,3)(1,2,2)(1,2,3)(2,2,3)
  ·4只蚂蚁出去有三种组合:(1,2,2,3)(1,1,2,2)(1,1,2,3)
  ·5只蚂蚁出去有一种组合:(1,1,2,2,3)
    你的任务就是根据给出的数据,计算蚂蚁们组队方案的总数.

Input

    第1行:4个用空格隔开的整数T,A,S,B.
    第2到A+1行:每行是一个正整数,为某只蚂蚁所在的家族的编号.

Output

 
    输出一个整数,表示当S到B(包括S和B)只蚂蚁出去觅食时,不同的组队方案数.
    注意:组合是无序的,也就是说组合1,2和组合2,1是同一种组队方式.最后的答案可能很大,你只需要输出答案的最后6位数字.注意不要输出前导0以及多余的空格.
 

Sample Input

3 5 2 3
1
2
2
1
3

INPUT DETAILS:

Three types of ants (1..3); 5 ants altogether. How many sets of size 2 or
size 3 can be made?

Sample Output

10

OUTPUT DETAILS:

5 sets of ants with two members; 5 more sets of ants with three members

 

 
错觉:组合数学???(大雾)
然鹅是(万能)dp
设$f[i][j]$表示从前$i$个家族选出$j$只蚂蚁的方案数
则 $f[i][j]+=\sum_{u=1}^{min(j,d[i])}f[i-1][j-u]$
但是会MLE+TLE
于是我们可以滚动数组+前缀和。
转化后就变成了$f[j]=sum[j]-sum[j-d[i]-1]$
end.
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cctype>
#define re register
using namespace std;
void read(int &x){
char c=getchar();x=;
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=(x<<)+(x<<)+(c^),c=getchar();
}
int min(int a,int b){return a<b?a:b;}
#define p 1000000
int t,a,s,b,q,f[],d[],sum[],ans;
int main(){
read(t);read(a);read(s);read(b); f[]=sum[]=;
for(re int i=;i<=a;++i) read(q),++d[q];
for(re int i=;i<=t;++i){
for(re int j=;j<=b;++j) sum[j]=(sum[j-]+f[j])%p;//前缀和处理
for(re int j=b;j>=;--j){
if(j<=d[i]) f[j]=sum[j]%p;//注意边界
else f[j]=(sum[j]-sum[j-d[i]-])%p;
}
}
for(re int i=s;i<=b;++i) ans=(ans+f[i])%p;
printf("%d",ans);
return ;
}

bzoj1630 / bzoj2023 [Usaco2005 Nov]Ant Counting 数蚂蚁的更多相关文章

  1. bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁*&&bzoj1630[Usaco2007 Demo]Ant Counting*

    bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁&&bzoj1630[Usaco2007 Demo]Ant Counting 题意: t个族群,每个族群有 ...

  2. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 56  Solved: 16[S ...

  3. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁(dp)

    题意 题目描述的很清楚...  有一天,贝茜无聊地坐在蚂蚁洞前看蚂蚁们进进出出地搬运食物.很快贝茜发现有些蚂蚁长得几乎一模一样,于是她认为那些蚂蚁是兄弟,也就是说它们是同一个家族里的成员.她也发现整个 ...

  4. 1630/2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 85  Solved: 40[S ...

  5. 【bzoj2023/1630】[Usaco2005 Nov]Ant Counting 数蚂蚁 dp

    题解: 水题 f[i][j] 前i种用了j个,前缀和优化就可以了

  6. BZOJ 2023 [Usaco2005 Nov]Ant Counting 数蚂蚁:dp【前缀和优化】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2023 题意: 有n个家族,共m只蚂蚁(n <= 1000, m <= 1000 ...

  7. bzoj 2023: [Usaco2005 Nov]Ant Counting 数蚂蚁【生成函数||dp】

    用生成函数套路推一推,推完老想NTT--实际上把这个多项式乘法看成dp然后前缀和优化一下即可 #include<iostream> #include<cstdio> using ...

  8. 【noi 2.6_9289】Ant Counting 数蚂蚁{Usaco2005 Nov}(DP)

    题意:有M个家族的蚂蚁,各Ni只(互相相同).问选出 l~r 只的不同方案数. 解法:很基础的一种DP,不要被"排列组合"所迷惑了啊~我之前接触过这个类型,可惜又忘了,一定要记住! ...

  9. [poj3046][Ant counting数蚂蚁]

    题目链接 http://noi.openjudge.cn/ch0206/9289/ 描述 Bessie was poking around the ant hill one day watching ...

随机推荐

  1. JSP自定义标签rtexprvalue属性

    rtexprvalue的全称是 Run-time Expression Value, 它用于表示是否可以使用JSP表达式.(比如EL表达式或OGNL表达式). 当在<attribute>标 ...

  2. Java虚拟机原理图解

    具体详情参考: http://blog.csdn.net/luanlouis/article/details/41046443 http://blog.csdn.net/luanlouis/artic ...

  3. 【BZOJ2588】Spoj 10628. Count on a tree 主席树+LCA

    [BZOJ2588]Spoj 10628. Count on a tree Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lasta ...

  4. [SQL] 理解SQL SERVER中的逻辑读,预读和物理读

    SQL SERVER数据存储的形式 在谈到几种不同的读取方式之前,首先要理解SQL SERVER数据存储的方式.SQL SERVER存储的最小单位为页(Page).每一页大小为8k,SQL SERVE ...

  5. iOS - 获取状态栏和导航栏尺寸(宽度和高度)

    iPhone开发当中,有时需要获取状态栏和导航栏高度.宽度信息,方便布局其他控件.下面介绍一下如何获取这些信息: // 状态栏(statusbar) CGRect rectStatus = [[UIA ...

  6. 【gulp】前端自动化工具---gulp的使用(一)------【巷子】

    什么是gulp?   基于node的自动化构建工具   扩展:开发的时候分为2个节点一个是开发阶段  另一个是部署阶段        开发阶段:源文件不会被压缩            部署阶段:所有文 ...

  7. 解决IE7下scroll的bug

    IE7下scroll滚动问题 没法撑开 ie7下没办法撑开div; 即是设置了overflow-y:scroll; 解决版本:给设置scroll的容器加上position:relative

  8. Jquery Uploadify使用参数详解

    开始上传  $('#uploadify_1').uploadifyUpload(); 1 uploader uploadify.swf文件的相对路径,该swf文件是一个带有文字BROWSE的按钮,点击 ...

  9. Object 对象有哪些方法?

    这个不看还真不一定能说全,请养成良好的阅读源码和JDK文档的习惯. 总结一下:一共11个,wait的3个+notify的2个,hashCode和equals还有toString共3个,然后clone和 ...

  10. talib 中文文档(十二):Pattern Recognition Functions K线模式识别,形态识别

    Pattern Recognition Functions K线模式识别,形态识别 CDL2CROWS - Two Crows 函数名:CDL2CROWS 名称:Two Crows 两只乌鸦 简介:三 ...