概念

流图

  给定一个有向图G= (V,E),若存在r∈V满足,满足从r出发能够到达V中所有的点,则称G是一个流图,记为(G,r),其中r是流图的源点。

流图的搜索树

  在一个流图(G,r)上从r出发,进行深度优先遍历(DFS),每个点只访问一次。所有发生递归的变(u,v)(换言之,从x到y是对y的第一次访问)构成的一颗以r为根的树我们把它称为流图(G,r)的搜索树。

时间戳

  同时,我们在深度优先遍历的过程中按照每个节点第一次被访问的时间顺序,依次给予流图中每个点1~n的标记,该点的标记被称作时间戳,用dfn[u]表示。

追溯值

  设subtree(u)是以u为根的子树。u的追溯值low[u]我们这样定义满足以下条件中任意一个的点v的最小时间戳:

  • 从u出发的边指向的点v在栈中。
  • 在搜索树上以u为根的子树上的点v。

边的分类

对于流图中的有向边(u,v),必是以下四种边之一:

  • 树枝边,指的是搜索树中的边,即u是y的父亲节点。
  • 前向边,指的是搜索树中u是v的祖先节点。
  • 后向边,指的是搜索树中v是u的祖先节点。
  • 横叉边,指的是除了以上三种边之外的边,它一定满足dfn[v] <dfn[u]。

算法流程

  1. 当前节点u第一次被访问时,把u入栈,初始化low[u] = dfn[u].
  2. 扫描从u出发的每一条边(u,v)。
    • 若v没被访问过,则说明(u,v)是树枝边,递归访问v,从y回溯之后,令low[u] = min(low[u], low[v])。
    • 若v别访问过并且v在栈中,则令low[u] = min(low[x], dfn[v]);
  3. 从v回溯之前,判断是否有(low[u] == dfn[u])。若成立,则不断从栈中弹出节点,直至u出栈。

p.s.绿色的点是当前访问的点,黄色的点是已经访问结束的点,灰色的点是未访问完全(正在访问以它为根节点的子树);

p.s.p.s.黑色的序号代表节点的编号,蓝色的序号代表该点的dfn值,红色的序号代表该点的low值;

p.s.p.s.p.s.红色的边代表树枝边,深蓝色的边代表前向边,水蓝色的边代表后向边,橙色的边代表横叉边。

代码

#include<bits/stdc++.h>
using namespace std; const int MAXN = , MAXM = ; //加边
int Head[MAXN], Next[MAXM], To[MAXM], edgenum = ;
inline void Add_edge(int from, int to)
{
Next[++ edgenum] = Head[from], Head[from] = edgenum, To[edgenum] = to;
} //tarjan
int dfn[MAXN], ti = , sta[MAXN], top = , color[MAXN], cnt = , low[MAXN], num[MAXN], vis[MAXN];
inline void dfs(int u)
{
dfn[u] = low[u] = ++ ti, vis[u] = , sta[++ top] = u;
for(int i = Head[u]; i != -; i = Next[i])
{
int v = To[i];
if(!dfn[v])
{
dfs(v);
low[u] = min(low[u], low[v]);
}
else
if(vis[v]) low[u] = min(dfn[v], low[u]);
}
if(dfn[u] == low[u])
{
color[u] = ++cnt;
num[cnt] ++;
for(;sta[top] != u;)
{
color[sta[top]] = cnt;
vis[sta[top]] = ;
num[cnt] ++;
top --;
}
top --;
}
return;
}
inline int tarjan(int n)
{
int ans = ;
for(int u = ; u <= n; ++ u)
if(!color[u]) dfs(u);
for(int i = ; i <= cnt; ++ i)
if(num[i] > ) ans ++;
return ans;
} int main()
{
memset(Head, -, sizeof(Head));
int n, m;
scanf("%d%d", &n, &m);
for(int i = ; i <= m; ++ i)
{
int x, y;
scanf("%d%d", &x, &y);
Add_edge(x, y);
}
printf("%d\n", tarjan(n));
return ;
}

【模板】Tarjan算法与有向图的强连通性的更多相关文章

  1. Kosaraju 算法检测有向图的强连通性

    给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strong ...

  2. [Tarjan系列] Tarjan算法与有向图的SCC

    前面的文章介绍了如何用Tarjan算法计算无向图中的e-DCC和v-DCC以及如何缩点. 本篇文章资料参考:李煜东<算法竞赛进阶指南> 这一篇我们讲如何用Tarjan算法求有向图的SCC( ...

  3. Tarjan算法求有向图强连通分量并缩点

    // Tarjan算法求有向图强连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #inc ...

  4. Tarjan算法 求 有向图的强连通分量

    百度百科 https://baike.baidu.com/item/tarjan%E7%AE%97%E6%B3%95/10687825?fr=aladdin 参考博文 http://blog.csdn ...

  5. Tarjan算法求有向图的强连通分量

    算法描述 tarjan算法思想:从一个点开始,进行深度优先遍历,同时记录到达该点的时间(dfn记录到达i点的时间),和该点能直接或间接到达的点中的最早的时间(low[i]记录这个值,其中low的初始值 ...

  6. tarjan算法-解决有向图中求强连通分量的利器

    小引 看到这个名词-tarjan,大家首先想到的肯定是又是一个以外国人名字命名的算法.说实话真的是很佩服那些算法大牛们,佩服得简直是五体投地啊.今天就遇到一道与求解有向图中强连通分量的问题,我的思路就 ...

  7. 『Tarjan算法 有向图的强连通分量』

    有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\( ...

  8. 强连通分量的Tarjan算法

    资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...

  9. HDU 1269 迷宫城堡 tarjan算法求强连通分量

    基础模板题,应用tarjan算法求有向图的强连通分量,tarjan在此处的实现方法为:使用栈储存已经访问过的点,当访问的点离开dfs的时候,判断这个点的low值是否等于它的出生日期dfn值,如果相等, ...

随机推荐

  1. 面向对象(基础oop)之进入继承

    大家好,我叫李京阳,,很高兴认识大家,之所以我想开一个自己的博客,就是来把自己所了解的知识点通过自己的话写一下,希望被博客园的朋友们点评和一起讨论一下,也希望从博客园中多认识一些软件开发人员!现在我开 ...

  2. [PHP] 通用网关接口CGI 的运行原理

    CGI 的运行原理:1.客户端访问某个 URL 地址之后,通过 GET/POST/PUT 等方式提交数据,并通过 HTTP 协议向 Web 服务器发出请求.2.服务器端的 HTTP Daemon(守护 ...

  3. 用JavaScript将数字转换为大写金额(收藏)

    (非原创, 来自网络,仅作收藏) var digitUppercase = function(n) { var fraction = ['角', '分']; var digit = [ '零', '壹 ...

  4. java核心技术-内部类

    高级类特性-(类的成员之一:内部类) 内的成员之一:内部类(属性.方法.构造器.代码块) 可以有四种权限访问修饰符 注意:外部类 只有两种 public 和 default 定义 : 可以将一个类的定 ...

  5. xshell 中解决中文乱码问题

    点击菜单栏 文件 -> 属性 在属性对话框内点击终端, 选择 编码为 UTF-8 即可.

  6. 20个实用便捷的CSS3工具、库及实例

    编者按:坊间传闻,有本CSS的高手炼成秘籍在江湖失传已久,书中所载,多为最新的惊人技术与实例示范,是为集大成者,一旦学成,代码效率猛增,功力提升数倍,今日偶获,不敢怠慢,赶紧发到优设,望人人受益.说人 ...

  7. jQuery轮播图(二)利用构造函数和原型创建对象以实现继承

    本文是在我开始学习JavaScript继承时,对原型继承的一些理解和运用.文中所述的继承方式均是使用js特有的原型链方式,实际上有了ES6的类之后,实现继承的就变得十分简单了,所以这种写法现在也不在推 ...

  8. DOM操作表单

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...

  9. 转:问题解决:The project cannot be built until build path errors are resolved

    转自:http://blog.csdn.net/marty_zhu/article/details/2566299 今天在eclipse里遇到这个问题,之前也遇到过,不过,通过clean一下项目,或者 ...

  10. Signal & Slot in Qt

    Try your best to provide an mechanism to implement what you want. 1. All is generated by QT Framewor ...