Protocols, Generics, and Existential Containers — Wait What?
For the longest time now, I thought that the two functions above were the same.
But in actuality, while they may do exactly the same thing between open and closed braces (which in this case is nothing at all), what’s going on behind the scenes is different. To understand what’s going on we’ll first have to talk about the Container.
The Container
Revealed in more detail in Session 416 of WWDC 2016, the container is a wrapper around parameters adhering to a protocol and is used non-generically. The container functions as a box of fixed size (we’ll get back to this in a sec), thus allowing all adherers of a protocol to be of the same size, which is necessary for them to be used interchangeably.
var vehicles: [Drivable]
The fixed size of the container also allows us to store classes/structs that adhere to a protocol in an array of type protocol (as seen above), since the elements are now of the same size and can be stored in contiguous memory.
So what goes into the container?
The container is more or less a box with 5 rows:
1. payload_data_0 = 0x0000000000000004,
2. payload_data_1 = 0x0000000000000000,
3. payload_data_2 = 0x0000000000000000,
4. instance_type = 0x000000010d6dc408 ExistentialContainers`type
metadata for ExistentialContainers.Car,
5. protocol_witness_0 = 0x000000010d6dc1c0
ExistentialContainers`protocol witness table for
ExistentialContainers.Car : ExistentialContainers.Drivable
in ExistentialContainers
The first 3 rows labeled payload_data 0–3, respectively, represent the Value Buffer. The value buffer holds 3 words, each word is a chunk of memory representing 8 bytes. If your struct has just 3 properties and each property has a size within that 8 byte range, then the values are offloaded to the Value Buffer.
If your struct has more than 3 properties or has properties not within the 8 byte range, say a Character (9 bytes) or a String (24 bytes), then the values are stored in a separate value table allocated on the heap. In this case payload_data_0 would hold a pointer to the value table on the heap and the other two payload variables would remain uninitialized. This indirection is what maintains the sizing of the Container.
For clarity here are a few structs, adhering to the Drivable protocol, and their respective payloads:
Structs adhering to the Drivable protocol
car =
payload_data_0 = 0x0000000000000004,
payload_data_1 = 0x0000000000000000,
payload_data_2 = 0x0000000000000000,
instance_type = 0x000000010b50e410
ExistentialContainers`type metadata for
ExistentialContainers.Car,
protocol_witness_0 = 0x000000010b50e1c8
ExistentialContainers`protocol witness table for
ExistentialContainers.Car: ExistentialContainers.Drivable
in ExistentialContainers)
motorcycle =
payload_data_0 = 0x0000608000036820,
payload_data_1 = 0x0000000000000000,
payload_data_2 = 0x0000000000000000,
instance_type = 0x000000010b50e4d8
ExistentialContainers`type metadata for
ExistentialContainers.Motorcycle,
protocol_witness_0 = 0x000000010b50e1d8
ExistentialContainers`protocol witness table for
ExistentialContainers.Motorcycle:
ExistentialContainers.Drivable in ExistentialContainers
bus =
payload_data_0 = 0x00006000000364a0,
payload_data_1 = 0x0000000000000000,
payload_data_2 = 0x0000000000000000,
instance_type = 0x000000010b50e5a8
ExistentialContainers`type metadata for
ExistentialContainers.Bus,
protocol_witness_0 = 0x000000010b50e1e8
ExistentialContainers`protocol witness table for
ExistentialContainers.Bus: ExistentialContainers.Drivable
in ExistentialContainers
As you can see, Car has the expected payload, but Motorcycle has only one payload entry, even though it has two properties. As mentioned before, String variables are 24 bytes, so the licensePlate property causes all of the properties to be stored on the heap, thus having only one payload entry — the pointer to the values on the heap. Bus has 4 properties, so as expected, there is just one payload entry.
Now for the final two rows.
The instance_type variable (4th row) is a pointer to the Value Witness Table (VWT), which is another table structure that contains Type specific information on how to Allocate, Copy, and Destroy the value represented by the container.
The protocol_witness_0 variable (5th row) holds a pointer to the Protocol Witness Table (PWT). The PWT is another table structure that holds references to the implementation of protocol functions defined by an object adhering to the protocol. The PWT is the reason why if we called drive() on a Drivable that happened to be a car object, it knows to execute the Car objects drive function and not, say, the Bus’s implementation.
Function Parameters
So what does all of this have to do with the original question? What’s the difference between our two functions?
Functions in question
Well, there are actually quite a few things — how they’re dispatched, how local variables are instantiated, accessing of associated types for generic return types, compiler optimizations, dynamic behavior … the list goes on.
But for now we’ll focus on how instantiation occurs and the accessing of associated types. Links will be provide below for more details on most of these.
On to how local variable instantiation occurs: The protocol based function on line 6 receives its input in the form of an container since it must support multiple types. A local variable, transportation, is then created using the VWT and PWT of the container.
On the other hand, the generic based function will receive its input without the container, despite also supporting multiple Drivable types. Why is that?
Instead of passing an container to the generic function so that the local variable can be instantiated, the generic function becomes specialized at compile time, aware of type specific information generated at the function’s call site. So, suppose a Car object were passed into startTraveling(), swift will generate a Car specific version of the function, say:
func startTravelingWithCar(transportation: Car) { }
Behind the scenes the function also receives the car’s PWT and VWT, giving the function the necessary information to be able to set up a value buffer if necessary and determine the car object’s protocol specific function implementation of drive(). This newly generated function is now type specific, giving us access to any associated types of the Car object and all of this type information is determined at compile time — which is part of the reason why we can have an associated type be the return type of a generic function, but can’t do the same for protocol based functions.
protocol Returnable {
associateType ReturnType
}
//This will compile
func returnTheType<T: Returnable>(object: T) -> T.ReturnType { } ✅
//This won't compile
func returnTheType(object: Returnable) -> object.ReturnType { } ❌
However protocols based functions aren’t bad, despite the fact that we can’t utilize associated types as return types. Protocol based functions, unlike their generic counterparts, offer a higher degree of dynamism and flexability at runtime. But, this post is long enough as is
Protocols, Generics, and Existential Containers — Wait What?的更多相关文章
- Which dispatch method would be used in Swift?-Existential Container
In this example: protocol MyProtocol { func testFuncA() } extension MyProtocol { func testFuncA() { ...
- swift protocol 见证容器 虚函数表 与 动态派发
一.测试代码: //protocol DiceGameDelegate: AnyObject { //} // //@objc protocol OcProtocol{ // @objc fun ...
- 【基本功】深入剖析Swift性能优化
简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...
- 深入剖析Swift性能优化
简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...
- Thinking in Java——笔记(11)
Holding Your Objects In general, your programs will always be creating new objects based on some cri ...
- Which dispatch method would be used in Swift?
In this example: protocol MyProtocol { func testFuncA() } extension MyProtocol { func testFuncA() { ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(十一)之Holding Your Objects
To solve the general programming problem, you need to create any number of objects, anytime, anywher ...
- Effective Java 29 Consider typesafe heterogeneous containers
When a class literal is passed among methods to communicate both compile-time and runtime type infor ...
- thinking in java Generics Latent typing
The beginning of this chapter introduced the idea of writing code that can be applied as generally a ...
随机推荐
- [转] 如何应用设计模式设计你的足球引擎(一和二)----Design Football Game(Part I and II)
原文地址: http://www.codeproject.com/KB/architecture/applyingpatterns.aspx 作者:An 'OOP' Madhusudanan 译者:赖 ...
- [PHP] apache在worker模式配置fastcgi使用php-fpm
1.准备: dpkg -L apache2查看所有安装的apache2的应用 a2query -M查看apache2使用的模式 httpd -l旧版本查看当前apache模式 2.查看apache的进 ...
- 最简单应用的时间日期选择插件---My97DatePicker
最简单的应用:http://www.my97.net/dp/demo/resource/2.1.asp
- 实习小结(三)--- 权限管理(RBAC)
这一周,大多数时间 用来做需求分析,细化每个页面需要实现的功能.由于这个项目需要四种身份登录查看,分别是学生,老师,领导,管理员.每个身份登入系统显示得页面都不相同,四个角色分析完成后,统计了一下页面 ...
- python单继沿用父类属性的两种方法
方法一 在子类中用父类调用其init方法(不建议) 方法二 在子类中使用super获得父类的方法 class Aaimal(object): type_name = '动物类' def __init_ ...
- html5 区块与内联div 与span html块级元素
HTML <div> 和 <span> HTML 列表 HTML 类 可以通过 <div> 和 <span> 将 HTML 元素组合起来. HTML 块 ...
- 【javascript】javasrcipt设计模式之策略模式
策略模式支持在运行时由使用者选择合适的算法,对于使用者而言不用关心背后的具体事项,而使用者自动根据当前程序执行的上下文和配置,从已有的算法列表中选择出合适的算法来处理当前任务. 1.要解决的问题 2. ...
- Java学习笔记(5)----使用正则表达式解决Google Code Jam Qualification2009赛题 Alien Language
原题地址:https://code.google.com/codejam/contest/90101/dashboard#s=p0 题目描述: Problem After years of study ...
- 文本(TextView)
今天给大家介绍一下简单的文本. 首先我们看下TextView的继承关系和一些基本的属性: xml文件如下: <?xml version="1.0" encoding=&quo ...
- 自定义View和ViewGroup(有这一篇就够了)
为了扫除学习中的盲点,尽可能多的覆盖Android知识的边边角角,决定对自定义View做一个稍微全面一点的使用方法总结,在内容上面并没有什么独特的地方,其他大神们的博客上面基本上都有讲这方面的内容,如 ...