Codeforces Round #526 (Div. 2) Solution
A. The Fair Nut and Elevator
Solved.
签.
#include <bits/stdc++.h>
using namespace std; #define N 110
int n, a[N]; int main()
{
while (scanf("%d", &n) != EOF)
{
for (int i = ; i <= n; ++i) scanf("%d", a + i);
int res = 1e9;
for (int x = , tmp = ; x <= ; ++x, res = min(res, tmp), tmp = ) for (int i = ; i <= n; ++i) if (a[i])
{
tmp += a[i] * (abs(x - i) + abs(i - ) + abs(x - ) + abs(x - ) + abs(i - ) + abs(x - i));
}
printf("%d\n", res);
}
return ;
}
B. Kvass and the Fair Nut
Upsolved.
题意:
刚开始题意读错,过了pretest就没管了
有$n桶啤酒,要从中取出s升,求取出后剩余的量最少的那桶啤酒最大$
思路:
二分或者直接算都行
#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 1010
int n;
ll s, v[N]; bool check(ll x)
{
ll tot = ;
for (int i = ; i <= n; ++i)
{
if (v[i] < x) return false;
tot += v[i] - x;
}
return tot >= s;
} int main()
{
while (scanf("%d%lld", &n, &s) != EOF)
{
for (int i = ; i <= n; ++i) scanf("%lld", v + i);
ll l = , r = 1e9, res = -;
while (l <= r)
{
ll mid = (l + r) >> ;
if (check(mid))
{
res = mid;
l = mid + ;
}
else
r = mid - ;
}
printf("%lld\n", res);
}
return ;
}
C. The Fair Nut and String
Solved.
题意:
有一串字符串,求有多少个字符串,是abababab形式的。
思路:
字符不是‘a’ 也不是‘b’ 的话是没用的,然后如果两个'a'之间有多个'b'也没用
缩短字符串后
必然是aaabaaababab 这样的形式的
那么像统计DAG那样统计就没了
#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 100010
const ll MOD = (ll)1e9 + ;
char s[N], t[N]; int main()
{
while (scanf("%s", s + ) != EOF)
{
int n = ;
for (int i = , len = strlen(s + ); i <= len; ++i) if (s[i] == 'a' || s[i] == 'b')
{
if (s[i] == 'a') t[++n] = 'a';
else if (s[i] == 'b' && t[n] == 'a') t[++n] = 'b';
}
if (n == )
{
puts("");
continue;
}
ll res = , pre = , cnt = ;
for (int i = ; i <= n; ++i)
{
if (t[i] == 'b')
{
pre = (pre * (cnt + )) % MOD;
cnt = ;
}
else
{
++cnt;
res = (res + pre) % MOD;
}
}
printf("%lld\n", res);
}
return ;
}
D. The Fair Nut and the Best Path
Upsolved.
题意:
在一棵树上,每个点是加油站,最多加油$w_i,然后每条边是路,耗费油v_i$
$定义f(u, v)为u->v的简单路径上每个点都加满油,假设油箱容量无限,最后剩下的油量$
如果其中某条路上油耗尽了,那么这条路是不可行的
思路:
我们把点权视为正直,边权视为负值
然后就是求任意两点之间的最大权值和
不需要考虑不合法的路径,因为如果存在不合法的路劲,
那么肯定存在另一条合法的路径使得答案比它更优。
令$f[u] 表示到达u的子树中某点的最大权, 这是纵向路径$
再考虑横向路径即可
#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 300010
#define pii pair <int, int>
int n, w[N];
vector <pii> G[N];
ll res, f[N]; void DFS(int u, int fa)
{
f[u] = w[u];
ll Max[] = {, };
for (auto it : G[u])
{
int v = it.first;
if (v == fa) continue;
DFS(v, u);
ll cost = it.second;
f[u] = max(f[u], f[v] - cost + w[u]);
ll tmp = f[v] - cost;
if (tmp > Max[])
{
Max[] = Max[];
Max[] = tmp;
}
else if (tmp > Max[])
Max[] = tmp;
}
res = max(res, max(f[u], Max[] + Max[] + w[u]));
} int main()
{
while (scanf("%d", &n) != EOF)
{
for (int i = ; i <= n; ++i) scanf("%d", w + i);
for (int i = ; i <= n; ++i) G[i].clear();
for (int i = , u, v, w; i < n; ++i)
{
scanf("%d%d%d", &u, &v, &w);
G[u].emplace_back(v, w);
G[v].emplace_back(u, w);
}
res = ;
DFS(, );
printf("%lld\n", res);
}
return ;
}
E. The Fair Nut and Strings
Upsolved.
题意:
一共有$k个长度为n的字符串,他们的范围是[s, t] 之间,按字典序排序$
求这些字符串(构造k个满足字典序要求的字符串)最多有多少个前缀
思路:
相当于给出一棵二叉字典树,给出左右界,叶子节点不超过$k个$
求最多节点个数
能扩展就扩展,贪心一下即可
注意特判$k = 1$
#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 500010
int n, k;
char s[N], t[N]; int main()
{
while (scanf("%d%d", &n, &k) != EOF)
{
scanf("%s%s", s + , t + );
if (k == )
{
printf("%d\n", n);
continue;
}
int flag = ;
ll cur = , res = ; k -= ;
for (int i = ; i <= n; ++i)
{
if (flag == && s[i] != t[i])
flag = ;
else if (flag == )
{
ll extend = cur;
if (s[i] == 'a') ++extend;
if (t[i] == 'b') ++extend;
if (extend <= k)
{
k -= extend;
cur += extend;
}
else
{
cur += k;
k = ;
}
}
res += cur + + flag;
}
printf("%lld\n", res);
}
return ;
}
F. Max Mex
Upsolved.
题意:
一棵树上,两种操作
$交换两点的p[]值$
$询问MEX(v(l)), l表示某挑简单路径上权值的集合$
思路:
我们考虑将点按权值排序
我们考虑$1 -> i 和 i + 1 -> j$
$这两段的合并$
如果可以合并,那么答案的下限就是$j$
$树上的路径有三种类型$
$1、一个点$
$2、一条链$
$3、两条链$
那分情况讨论,一共只有6种情况
$但是这样太麻烦了$
$我们考虑这三种状态都可以用两条链的情况来表示$
$那么合并的时候,一条路径可以用两个点来表示$
$那么一条路径如果包含另外一条路径的两个端点$
$那么这条路径就包含另外一条路径$
$也就是说我们只需要分两次合并另外一条路径的两点即可$
$这样就只有一种情况$
#include <bits/stdc++.h>
using namespace std; #define N 200010
int n, q, p[N];
vector <int> G[N]; int in[N], out[N];
namespace ST
{
int rmq[N << ];
int mm[N << ];
int dp[N << ][];
int F[N << ], P[N];
int cnt, cnt2;
void init(int n)
{
mm[] = -;
for (int i = ; i <= n; ++i)
{
mm[i] = ((i & (i - )) == ) ? mm[i - ] + : mm[i - ];
dp[i][] = i;
}
for (int j = ; j <= mm[n]; ++j)
for (int i = ; i + ( << j) - <= n; ++i)
{
dp[i][j] = rmq[dp[i][j - ]] < rmq[dp[i + ( << (j - ))][j - ]] ?
dp[i][j - ] : dp[i + ( << (j - ))][j - ];
}
}
void DFS(int u, int pre, int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
in[u] = ++cnt2;
for (auto v : G[u]) if (v != pre)
{
DFS(v, u, dep + );
F[++cnt] = u;
rmq[cnt] = dep;
}
out[u] = cnt2;
}
void init(int root, int node_num)
{
cnt = ; cnt2 = ;
DFS(root, root, );
init( * node_num - );
}
int query(int a, int b)
{
a = P[a], b = P[b];
if (a > b) swap(a, b);
int k = mm[b - a + ];
return F[rmq[dp[a][k]] <= rmq[dp[b - ( << k) + ][k]] ?
dp[a][k] : dp[b - ( << k) + ][k]];
}
} namespace SEG
{
struct node
{
int u, v, p;
void init() { u = v = p = ; }
node () {}
node (int u, int v, int p) : u(u), v(v), p(p) {}
}a[N << ], res;
int ans;
void init() { memset(a, , sizeof a); }
bool anc(int x, int y)
{
return in[x] <= in[y] && out[x] >= out[y];
}
node check(node a, int y)
{
if (a.u == - || y == -) return node(-, -, -);
if (!y) return a;
if (!a.u) return node(y, y, y);
if (!anc(a.u, a.v)) swap(a.u, a.v);
if (anc(a.u, a.v))
{
if (anc(a.u, y))
{
int p = ST::query(y, a.v);
if (p == y)
return a;
else if (p == a.u)
return node(a.v, y, a.u);
else if (p == a.v)
return node(a.u, y, a.u);
else
return node(-, -, -);
}
else if (anc(y, a.u))
return node(y, a.v, y);
else
{
int p = ST::query(a.v, y);
return node(a.v, y, p);
}
}
else if (anc(a.p, y))
{
if (anc(a.u, y))
return node(y, a.v, a.p);
else if (anc(a.v, y))
return node(a.u, y, a.p);
else if (anc(y, a.u) || anc(y, a.v))
return a;
else
return node(-, -, -);
}
else
return node(-, -, -);
}
node merge(node a, node b)
{
a = check(a, b.u);
a = check(a, b.v);
return a;
}
void update(int id, int l, int r, int pos, int v)
{
if (l == r)
{
a[id] = node(v, v, v);
return;
}
int mid = (l + r) >> ;
if (pos <= mid) update(id << , l, mid, pos, v);
else update(id << | , mid + , r, pos, v);
a[id] = merge(a[id << ], a[id << | ]);
// printf("%d %d %d %d %d %d\n", l, r, a[id].t, a[id].u, a[id].v, a[id].p);
// printf("%d %d %d %d %d %d\n", l, mid, a[id << 1].t, a[id << 1].u, a[id << 1].v, a[id << 1].p);
// printf("%d %d %d %d %d %d\n", mid + 1, r, a[id << 1 | 1].t, a[id << 1 | 1].u, a[id << 1 | 1].v, a[id << 1 | 1].p);
// puts("*************************************");
}
bool query(int id, int l, int r)
{
node tmp = merge(res, a[id]);
// printf("bug %d %d %d %d %d\n", l, r, a[id].u, a[id].v, a[id].p);
// printf("bug %d %d %d %d %d\n", l, r, res.u, res.v, res.p);
// printf("bug %d %d %d %d %d\n", l, r, tmp.u, tmp.v, tmp.p);
// puts("**********************");
if (tmp.u != -)
{
res = tmp;
ans = r;
return ;
}
if (l == r) return ;
int mid = (l + r) >> ;
if (query(id << , l, mid))
query(id << | , mid + , r);
return ;
}
} int main()
{
while (scanf("%d", &n) != EOF)
{
for (int i = ; i <= n; ++i) G[i].clear();
for (int i = ; i <= n; ++i) scanf("%d", p + i), p[i] += ;
for (int v = , u; v <= n; ++v)
{
scanf("%d", &u);
G[u].push_back(v);
G[v].push_back(u);
}
ST::init(, n);
SEG::init();
for (int i = ; i <= n; ++i)
{
//printf("%d %d\n", p[i], i);
SEG::update(, , n, p[i], i);
}
scanf("%d", &q);
for (int i = , op, x, y; i <= q; ++i)
{
scanf("%d", &op);
if (op == )
{
scanf("%d%d", &x, &y);
swap(p[x], p[y]);
SEG::update(, , n, p[x], x);
SEG::update(, , n, p[y], y);
}
else
{
//for (int i = 1; i <= n; ++i) printf("%d%c", p[i], " \n"[i == n]);
SEG::res.init(); SEG::ans = ;
SEG::query(, , n);
printf("%d\n", SEG::ans);
}
}
}
return ;
}
Codeforces Round #526 (Div. 2) Solution的更多相关文章
- Codeforces Round #466 (Div. 2) Solution
从这里开始 题目列表 小结 Problem A Points on the line Problem B Our Tanya is Crying Out Loud Problem C Phone Nu ...
- 老年OIer的Python实践记—— Codeforces Round #555 (Div. 3) solution
对没错下面的代码全部是python 3(除了E的那个multiset) 题目链接:https://codeforces.com/contest/1157 A. Reachable Numbers 按位 ...
- Codeforces Round #545 (Div. 1) Solution
人生第一场Div. 1 结果因为想D想太久不晓得Floyd判环法.C不会拆点.E想了个奇奇怪怪的set+堆+一堆乱七八糟的标记的贼难写的做法滚粗了qwq靠手速上分qwqqq A. Skyscraper ...
- Codeforces Round 500 (Div 2) Solution
从这里开始 题目地址 瞎扯 Problem A Piles With Stones Problem B And Problem C Photo of The Sky Problem D Chemica ...
- [Codeforces Round #526 (Div. 2)]
https://codeforces.com/contest/1084 A题 数据量很小,枚举就行 #include<iostream> #include<cstdio> #i ...
- Codeforces Round #526 (Div. 2) E. The Fair Nut and Strings
E. The Fair Nut and Strings 题目链接:https://codeforces.com/contest/1084/problem/E 题意: 输入n,k,k代表一共有长度为n的 ...
- Codeforces Round #526 (Div. 2) D. The Fair Nut and the Best Path
D. The Fair Nut and the Best Path 题目链接:https://codeforces.com/contest/1084/problem/D 题意: 给出一棵树,走不重复的 ...
- Codeforces Round #526 (Div. 2) C. The Fair Nut and String
C. The Fair Nut and String 题目链接:https://codeforces.com/contest/1084/problem/C 题意: 给出一个字符串,找出都为a的子序列( ...
- Codeforces Round #526 (Div. 2) A.B
A. The Fair Nut and Elevator 题目链接:https://codeforces.com/contest/1084/problem/A 题意: 一栋房子有n层楼,同时有个电梯( ...
随机推荐
- 安装php5.5 mssql扩展报错
./configure 后,直接make可能会出现libtool: link: `php_mssql.lo' is not a valid libtool object 的错误. make clean ...
- ajax如何上传文件
PHP: <?php /** * Created by PhpStorm. * User: DELL * Date: 2017/11/23 * Time: 10:57 */ header(&qu ...
- iOS 9 分屏多任务:入门(中文版)
本文转载至 http://www.cocoachina.com/ios/20150714/12555.html 本文由钢铁侠般的卿哥(微博)翻译自苹果官方文档:Adopting Multitaskin ...
- ubuntu 备忘
卷组扩容 Linux mint采用默认卷组的安装方式 sain@Linux ~ $ df -hl Filesystem Size Used Avail Use% Mounted on udev .7G ...
- 互斥锁mutex
https://blog.csdn.net/rqc112233/article/details/50015069 //g++ mute.cpp -o mute -g -lrt -lpthread #i ...
- my97datepicker 怎么设置页面加载时默认值为当天时间
Demo示例如下:<script language="javascript" type="text/javascript" src="My97D ...
- Android 命令行打包和签名
使用命令行方式进行签名需要JDK中的两个命令行工具:keytool.exe和jarsigner.exe.可按如下两步对apk文件进行签名: 1. # keytool -genkey -v -keyst ...
- synchronized同步方法
“非线程安全”其实会在多个线程对同一个对象中的实例变量进行并发访问的时候产生,产生的后果是脏读,也就是取到的数据是被更改过的.而“线程安全”就是以获得的实例变量的值是经过同步处理的,不会出现脏读的现象 ...
- POJ 3461 Oulipo[附KMP算法详细流程讲解]
E - Oulipo Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- 【BZOJ1834】[ZJOI2010]network 网络扩容 最大流+最小费用流
[BZOJ1834][ZJOI2010]network 网络扩容 Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不 ...