[51nod1847]奇怪的数学题
description
51nod
求$$\sum_{i=1}{n}\sum_{j=1}{n}sgcd(i,j)^k$$其中\(sgcd(i,j)\)表示\(i,j\)的次大公约数,如果\(gcd(i,j)=1\)那么\(sgcd(i,j)=0\)。
solution
记答案为\(Ans\)。
首先考虑直接枚举\(sgcd(i,j)\)。
\]
其中当\(n\not=1\)时\(\xi^k(n)=\frac{n}{p_{min}(n)}\)。
这个时候如果你像菜鸡fdf一样瞎反演出
\(\sum_{i=1}^{n}\sum_{j=1}^n[gcd(i,j)==d]=\sum_{t|d}\lfloor\frac{n}{t}\rfloor^2\mu(\frac{t}{d})\)就会变成这样
Ans=&\sum_{d=1}^{n}\xi^k(d)\sum_{t|d}\lfloor\frac{n}{t}\rfloor^2\mu(\frac{t}{d}) \\
=&\sum_{t=1}^{n}\lfloor\frac{n}{t}\rfloor^2\sum_{t|d}\xi^k(d)\mu(\frac{t}{d}) \\
\end{aligned}
\]
假设我们对于前面数论分块,那么现在要求
\sum_{i=1}^{n}\sum_{n|d}\xi^k(d)\mu(\frac{d}{n})=&\sum_{i=1}^{n}\xi^k(i)\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor}\mu(j)\\
\end{aligned}
\]
你会发现这玩意又要数论分块一次。
然后菜鸡fdf就华丽地得到了一个\(O(n)\)的做法。O(n)可能也可以做
我们注意\(\sum_{i=1}^{n}\sum_{j=1}^n[gcd(i,j)==d]\)中\(i,j\)的上界都是\(n\)。
转化一下变成求
\]
这玩意不就是枚举其中一个数+去重么。
这应该是一个经典等式,然而我因为太菜没有做过。
于是原式变为
\]
这样只要一次数论分块即可。
Code
我不管我不管我不会杜教筛只会暴力Min_25
#include<bits/stdc++.h>
#define FL "a"
using namespace std;
typedef unsigned int ll;
typedef long double dd;
const int N=1e5+10;
const int mod=1e9+7;
inline ll read(){
ll data=0,w=1;char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
}
inline void file(){
freopen(FL".in","r",stdin);
freopen(FL".out","w",stdout);
}
inline ll poww(ll a,ll b){
ll res=1;
for(;b;b>>=1,a*=a)
if(b&1)res*=a;
return res;
}
int cnt;ll n,k,pri[N],pw[N][52],sum[N],sumk[N],s[52][52];bool vis[N];
inline void sieve(){
register int i,j;
for(vis[1]=1,i=2;i<N;i++){
if(!vis[i])pri[++cnt]=i;
for(j=1;j<=cnt&&i*pri[j]<N;j++){
vis[i*pri[j]]=1;if(i%pri[j]==0)break;
}
}
for(i=1;i<=cnt;i++)
for(j=pw[i][0]=1;j<=50;j++)pw[i][j]=pw[i][j-1]*pri[i];
for(i=1;i<=cnt;i++){
sum[i]=sum[i-1]+pri[i];
sumk[i]=sumk[i-1]+poww(pri[i],k);
}
s[0][0]=1;
for(i=0;i<=50;i++)
for(j=1;j<=i;j++)
s[i][j]=s[i-1][j-1]+j*s[i-1][j];
}
inline ll getsum(ll sn,ll sk){
register ll res=0,tmp,i,j;
for(i=0;i<=sk;i++){
tmp=1;
for(j=0;j<=i;j++)
if((sn-j+1)%(i+1)==0)tmp*=(sn-j+1)/(i+1);
else tmp*=(sn-j+1);
res+=s[sk][i]*tmp;
}
return res;
}
ll w[N],g[N],xi[N],ps[N],phi[N];int sqr,tot,id1[N],id2[N];
#define ID(x) (x<=sqr?id1[x]:id2[n/(x)])
inline void Min25(){
register ll i,j,a,b,e,ans;
for(sqr=sqrt(n),tot=0,i=1;i<=n;i=j+1){
j=n/(n/i);w[++tot]=n/i;
w[tot]<=sqr?id1[w[tot]]=tot:id2[n/w[tot]]=tot;
}
for(i=1;i<=tot;i++)g[i]=getsum(w[i],k)-1;
for(i=1;i<=cnt&&1ll*pri[i]*pri[i]<=n;i++)
for(j=1;1ll*pri[i]*pri[i]<=w[j];j++){
g[j]-=pw[i][k]*(g[ID(w[j]/pri[i])]-sumk[i-1]);
xi[j]+=g[ID(w[j]/pri[i])]-sumk[i-1];
}
for(i=1;i<=tot;i++)g[i]=w[i]-1;
for(i=1;i<=cnt&&1ll*pri[i]*pri[i]<=n;i++)
for(j=1;1ll*pri[i]*pri[i]<=w[j];j++)
g[j]-=g[ID(w[j]/pri[i])]-i+1;
for(i=1;i<=tot;i++)ps[i]-=g[i],xi[i]+=g[i];
for(i=1;i<=tot;i++)g[i]=1ll*w[i]*(w[i]+1)/2-1;
for(i=1;i<=cnt&&1ll*pri[i]*pri[i]<=n;i++)
for(j=1;1ll*pri[i]*pri[i]<=w[j];j++)
g[j]-=pri[i]*(g[ID(w[j]/pri[i])]-sum[i-1]);
for(i=1;i<=tot;i++)ps[i]+=g[i];
for(i=cnt;i;i--)
if(1ll*pri[i]*pri[i]<=n)
for(j=1;1ll*pri[i]*pri[i]<=w[j];j++)
for(e=1,a=pri[i];1ll*a*pri[i]<=w[j];e++,a*=pri[i])
phi[j]+=(pw[i][e]-pw[i][e-1])*(phi[ID(w[j]/a)]+ps[ID(w[j]/a)]-(sum[i]-i))+(pw[i][e+1]-pw[i][e]);
for(i=1;i<=tot;i++)phi[i]+=ps[i]+1;
ans=0;
for(i=1;i<=n;i=j+1)
j=n/(n/i),ans+=(xi[ID(j)]-xi[ID(i-1)])*(2*phi[ID(n/i)]-1);
printf("%u\n",ans);
}
int main()
{
n=read();k=read();sieve();Min25();
return 0;
}
[51nod1847]奇怪的数学题的更多相关文章
- 51nod1847 奇怪的数学题 (Min_25筛+第二类斯特林数)
link \(\sum_{i=1}^n\sum_{j=1}^n\mathrm{sgcd}(i,j)^k=\sum_{p=1}^ns(p)^k\sum_{i=1}^n\sum_{j=1}^n[\gcd( ...
- 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...
- [51nod 1847]奇怪的数学题
[ 51nod 1847 ]奇怪的数学题 题目 点这里看题目. 分析 是挺奇怪的...... 以下定义质数集合为\(P\),\(p_i\)为第\(i\)个质数. 定义\(mp(x)\) ...
- 【51NOD1847】奇怪的数学题 min_25筛
题目描述 记\(sgcd(i,j)\)为\(i,j\)的次大公约数. 给你\(n\),求 \[ \sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k \] 对\(2^{32}\) ...
- 【51nod1847】 奇怪的数学题
就当我是 A 了此题吧... 首先预备知识有点多(因为题目要处理的东西都挺毒瘤): 杜教筛运用(当然你可以用其他筛?) 第二类斯特林数相关定理 下降阶乘幂相关定理 min25 筛运用 好了可以关掉本题 ...
- 【51Nod1847】奇怪的数学题
记\(f(x)=\)\(x\)的次大因数,那么\(sgcd(i,j)=f(gcd(i,j))\). 下面来推式子: \[ \begin{aligned} \sum_{i=1}^n\sum_{j=1 ...
- 51NOD1847:奇怪的数学题
传送门 Sol 设 \(f(d)\) 表示 \(d\) 所有约数中第二大的,\(low_d\) 表示 \(d\) 的最小质因子 \[f(d)=\frac{d}{low_d}\] 那么 \[\sum_{ ...
- 【51nod1847】奇怪的数学题(Min_25筛+杜教筛)
题面 传送门 题解 这题有毒--不知为啥的错误调了半天-- 令\(f(i)={sgcd(i)}\),那么容易看出\(f(i)\)就是\(i\)的次大质因子,用\(i\)除以它的最小质因子即可计算 于是 ...
- 【51nod 1847】奇怪的数学题
题目描述 给出 N,K ,请计算下面这个式子: \(∑_{i=1}^N∑_{j=1}^Nsgcd(i,j)^k\) 其中,sgcd(i, j)表示(i, j)的所有公约数中第二大的,特殊地,如果gcd ...
随机推荐
- [bzoj1564]二叉查找树
题目描述 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结点的权值都比它的 ...
- springmvc 使用 response 的注意事项以及解决500 空指针异常找不到 response 的方法
使用注解方式在类中(Controller)来装载request时,是可以正常使用request的(必须在启动时才注入,所以不支持热部署),但是同样使用这种方式在已经装载了 request的情况下装载 ...
- Elasticsearch5.x版本中对Text类型进行聚合时提示illegal_argument_exception
Having this field in my mapping "answer": { "type": "text", "fiel ...
- 将 Python3 文件打包成 exe 文件
我们用 Python 写好的代码,如何给别人在没有配置 Python 环境的情况下直接使用呢?尤其是面向 windows 众. 因为 Python 是一门解释性的语言,离开了 Python 解释器,P ...
- NLP的12条精髓
NLP是神经语言程序学 (Neuro-Linguistic Programming) 的英文缩写.一.没有两个人是一样的 No two persons are the same. 1.没有两个人的人生 ...
- 查看Linux系统版本的命令
1.lsb_release -a,即可列出所有版本信息: [root@S-CentOS ~]# lsb_release -a LSB Version: :base-4.0-amd64:base-4.0 ...
- Linux系统中Oracle11g数据库的安装与验证
1.查看Linux系统的位数 2.下载Oracle10g数据库软件 https://blog.csdn.net/xiezuoyong/article/details/81197688 (需要注册Ora ...
- vue关于img src动态赋值问题
解决方法: 加个require()就可以了 <img :src="require('../assets/images/'+imgsrc+'.png')"/>
- 【坚持】Selenium+Python学习之从读懂代码开始 DAY1
学习Selenium+Python已经好几个月了,但越学发现不懂的东西越多. 感觉最大的问题还是在于基础不扎实,决定从头开始,每天坚持读代码,写代码. 相信量变一定能到质变!!! 2018/05/09 ...
- Activity 在横竖屏切换情况下的生命周期变化
title: Activity 在横竖屏切换情况下的生命周期变化 date: 2018-04-26 23:05:57 tags: [Activity] categories: [Mobile,Andr ...