蓝桥杯 生命之树【树状dp】
生命之树
在X森林里,上帝创建了生命之树。
他给每棵树的每个节点(叶子也称为一个节点)上,
都标了一个整数,代表这个点的和谐值。
上帝要在这棵树内选出一个非空节点集S,
使得对于S中的任意两个点a,b,都存在一个点列 {a, v1, v2, ..., vk, b}
使得这个点列中的每个点都是S里面的元素,且序列中相邻两个点间有一条边相连。
在这个前提下,上帝要使得S中的点所对应的整数的和尽量大。
这个最大的和就是上帝给生命之树的评分。
经过atm的努力,他已经知道了上帝给每棵树上每个节点上的整数。
但是由于 atm 不擅长计算,他不知道怎样有效的求评分。
他需要你为他写一个程序来计算一棵树的分数。
「输入格式」
第一行一个整数 n 表示这棵树有 n 个节点。
第二行 n 个整数,依次表示每个节点的评分。
接下来 n-1 行,每行 2 个整数 u, v,表示存在一条 u 到 v 的边。
由于这是一棵树,所以是不存在环的。
「输出格式」
输出一行一个数,表示上帝给这棵树的分数。
「样例输入」
5
1 -2 -3 4 5
4 2
3 1
1 2
2 5
「样例输出」
8
题目分析
这是一道树状dp题,每个节点只有两种决策,选与不选,因此我们建立一个数组。
int dp [ N ][2] ;其中,dp[ i ][ 1 ]表示选第i个节点的情况下最大分数,dp [ i ][ 0 ]为不选的情况下的最大分数。
d[ i ][ 0 ] = t,那么存在一个 i 的子节点 j,使得 d[ j ][ 1 ] 的值也为 t , 因此我们可以让所有的d[ i ] [ 0] = 0
这样一来,状态转移方程很容易写出来:
\[{\rm{d}}[i][1] = \sum {\max (d[j][1],d[j][0])} + w[i]\]
\[{\rm{d}}[i][1] = \sum {\max (d[j][1],{\rm{0}})} + w[i]\]
其实这样子,大家就能发现,dp[i][0]没有用到,dp设成一维的,也是可以解决这个问题的。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int w[100005];
int vist[100005];
int dp[100005];
int n;
int ans = -0x3f3f3f3f;
vector<int> G[100005]; void dfs(int u){
dp[u] = w[u];
vist[u] = 1;
for (int i = 0; i < G[u].size(); i++){
if (!vist[G[u][i]]){//未访问的节点 才是 他的子节点
dfs(G[u][i]);
dp[u] += max(dp[G[u][i]], 0);
}
}
ans = max(dp[u], ans);
}
int main(){
cin >> n;
int i;
for (i = 1; i <= n; i++)
cin >> w[i];
int a, b;
for (i = 1; i < n; i++){
scanf("%d %d", &a, &b);
G[a].push_back(b);
G[b].push_back(a);
}
dfs(1);
cout << ans << endl;
return 0;
}
蓝桥杯 生命之树【树状dp】的更多相关文章
- 树状DP (poj 2342)
题目:Anniversary party 题意:给出N各节点的快乐指数,以及父子关系,求最大快乐指数和(没人职员愿意跟直接上司一起玩): 思路:从底向上的树状DP: 第一种情况:第i个员工不参与,F[ ...
- poj3659树状DP
Cell Phone Network Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6273 Accepted: 225 ...
- hdu 1561 The more, The Better_树状dp
题目链接 题意:给你一棵树,各个节点都有价值(除根节点),从根节点出发,选择m个节点,问最多的价值是多小. 思路:很明显是树状dp,遍历树时背包最优价值,dp[i][k]=max{dp[i][r]+d ...
- poj 2342 Anniversary party_经典树状dp
题意:Ural大学有n个职员,1~N编号,他们有从属关系,就是说他们关系就像一棵树,父节点就是子节点的直接上司,每个职员有一个快乐指数,现在要开会,职员和职员的直接上司不能同时开会,问怎才能使开会的快 ...
- 树状DP HDU1520 Anniversary party
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1520 题意:职员之间有上下级关系,每个职员有自己的happy值,越高在派对上就越能炒热气氛.但是必须是 ...
- [Codeforces743D][luogu CF743D]Chloe and pleasant prizes[树状DP入门][毒瘤数据]
这个题的数据真的很毒瘤,身为一个交了8遍的蒟蒻的呐喊(嘤嘤嘤) 个人认为作为一个树状DP的入门题十分合适,同时建议做完这个题之后再去做一下这个题 选课 同时在这里挂一个选取节点型树形DP的状态转移方程 ...
- HDU 4714 Tree2cycle(树状DP)(2013 ACM/ICPC Asia Regional Online ―― Warmup)
Description A tree with N nodes and N-1 edges is given. To connect or disconnect one edge, we need 1 ...
- poj2486--Apple Tree(树状dp)
Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7789 Accepted: 2606 Descri ...
- 洛谷P2015 二叉苹果树(树状dp)
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 洛谷P1122 最大子树和 (树状dp)
题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...
随机推荐
- 【p4tutorials】P4 v1.1 Simple Router
fork了p4tutorials,想从里面窥探一些门道. 本文相关的原文链接:ReadMe 说明: 下面的这个P4程序,是当下最著名的 simple_router 程序的一个版本,是根据P4的1.1版 ...
- Codeforces Round #408 (Div. 2) C. Bank Hacking
http://codeforces.com/contest/796/problem/C Although Inzane successfully found his beloved bone, Zan ...
- BZOJ 3123 【SDOI2013】 森林
题目链接:森林 这道题想法很显然.既然只有加边而没有删边,那么每次启发式合并就可以了.查询路径\(k\)小似乎需要主席树,那么把主席树和倍增表一起暴力重构就好了. 然后发现这样的空间复杂度是\(O(n ...
- django urlencode
from django.utils.http import urlquote a = urlquote('分享') print(a)
- iOS线程之——NSCondition
多线程在各种编程语言中都是难点,很多语言中实现起来很麻烦,objective-c虽然源于c,但其多线程编程却相当简单,可以与java相媲美.这篇文章主要从线程创建与启动.线程的同步与锁.线程的交互.线 ...
- Rails-Treasure chest3 嵌套表单; Ransack(3900✨)用于模糊查询, ranked-model(800🌟)自订列表顺序; PaperTrail(5000✨)跟踪model's data,auditing and versioning.
自订列表顺序, gem 'ranked-model' 多步骤表单 显示资料验证错误讯息 资料筛选和搜寻, gem 'ransack' (3900✨); 软删除和版本控制 数据汇出(csv), 自订列表 ...
- HDU 2577 分情况多维DP
How to Type Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- UVALive-3268 Jamie's Contact Groups (最大流,网络流建模)
题目大意:你的手机通讯录里有n个联系人,m个分组,其中,有的联系人在多个分组里.你的任务是在一些分组里删除一些联系人,使得每个联系人只在一个分组里并且使人数最多的那个分组人数最少.找出人数最多的那个分 ...
- 【Matplotlib】概要总览第一讲
之前一直使用 matplotlib, 但都是随用随查,现在特开此系列帖子已记录其学习过程. Matplotlib可能是Python 扩展包中仅有的最流行的 2D 绘图库.她不仅提供了快速的方式可视化P ...
- vue-router与v-if实现tab切换的思考
vue-router 该如何使用 忽然碰到一个常见的问题,明明可以使用 v-if / v-show 可以的解决的问题,有没有必要是使用 vue-router来解决. 比如常见的 tab 切换.一时间, ...