https ddos检测——研究现状
from: https://jyx.jyu.fi/bitstream/handle/123456789/52275/1/URN%3ANBN%3Afi%3Ajyu-201612125051.pdf
相关文献汇总如下:
S1 Eliseev and Gurina (2016) Algorithms for network server anomaly behavior detection without traffic content inspection ACM 1
S2 Zolotukhin et al. (2016b) Weighted Fuzzy Clustering for Online Detection of Application DDoS Attacks in Encrypted Network Traffic Scopus 1
S3 Zolotukhin et al. (2016a) Increasing Web Service Availability by Detecting Application-Layer DDoS Attacks in Encrypted Traffic IEEE, Scopus 1
S4 Zolotukhin et al. (2015) Data Mining Approach for Detection of DDoS Attacks Utilizing SSL/TLS Protocol Scopus 1
S5 Petiz et al. (2014) Detecting DDoS Attacks at the Source Using Multiscaling Analysis IEEE 1
S6 Wang et al. (2015) DDoS attack protection in the era of cloud computing and Software-Defined Networking ScienceDirect 1
S7 Hoeve (2013) Detecting Intrusions in Encrypted Control Traffic ACM 1
S8 Amoli and Hämäläinen (2013) A Real Time Unsupervised NIDS for Detecting Unknown and Encrypted Net- work Attacks in High Speed Network IEEE 1
S9i Das, Sharma, and Bhattacharyya (2011) Detection of HTTP Flooding Attacks in Multiple Scenarios ACM 0
S10i Shiaeles et al. (2012) Real time DDoS detection using fuzzy estimators ScienceDirect 0
S11 Chen, Chen, and Delis (2007) An Inline Detection and Prevention Framework for Distributed Denial of Service Attacks Scopus 1
S12i Lee et al. (2008) DDoS attack detection method using cluster analysis ScienceDirect 0
S13i Caulkins, Lee, and Wang (2005) A Dynamic Data Mining Technique for Intrusion Detection Systems ACM 0
S14 Abimbola, Shi, and Merabti (2003) NetHost-Sensor: A Novel Concept in Intrusion Detection Systems IEEE 0
加密的检测手段:
Table 11. Detection methods in encrypted networks from included studies Study
Detection method Strategy Features
[S1] Correlation functions & MLP Statistical analysis & Classification Server response rate metrics
[S2] Fuzzy c-means Fuzzy clustering Statistics and data from packet headers
[S3] Single-linkage, Kmeans, fuzzy c-means, SOM, DBSCAN & SAE Classification (NN) & clustering Statistics and data from packet headers
[S4] DBSCAN, K-means, k-NN, SOM, SVDD Clustering Packet header statistics
[S5] Multiscaling Analysis Statistical analysis Number of packets & average energy per timescale
[S6] Probabilistic inference graphical model Bayesian networks Chow-Liu algorithm for feature decision
[S7] Edit distance -based searching Statistical analysis & clustering time, size and direction of the packet
[S8] DBSCAN Statistical analysis & clustering Packet header and flow data in different resolutions
[S11] Signatures & stateful protocol analysis Signature & stateful protocol analysis TCP, UDP and ICMP packet headers and statistics as well as payload
[S14] Snort signatures Signature & system call sequence analysis packet payload
非加密的检测:
Table 12. Applicable methods from non-encrypted research in included studies Study
Detection method Strategy Features
[S9i] Statistical analysis, pattern disagreement and projected clustering Statistical analysis and clustering TCP header data & packet rate per interval
[S10i] Fuzzy estimator Statistical analysis Mean time between network packets
[S12i] Hierarchical clustering Clustering TCP header information & number of packets
[S13i] Classification tree Classification TCP header data
详细分析:
《Algorithms for network server anomaly behavior detection without traffic content inspection》目标是检测异常:
[S1] Eliseev and Gurina (2016) use correlation functions of data block size & number of packets per time unit observed from the webserver. They use long time intervals, i.e. three weeks of real data to train. They propose two algorithms. The first looks at the Pearson correlation coefficient between cross-correlation functions in a similar time interval in the current and training sets. The second algorithm uses a multilayer perceptron (MLP) with Levenberg-Marquardt algorithm to train and test the current cross-correlation functions. A threshold for the reconstruction error is set to determine an anomalous function. They say that these algorithms can be easily implemented as a lightweight DDoS HIDS in IoT devices. The method uses both statistical analysis and classification.
S2 Zolotukhin et al. (2016b) Weighted Fuzzy Clustering for Online Detection of Application DDoS Attacks in Encrypted Network Traffic Scopus 1
[S2] Zolotukhin et al. (2016b) propose a method for detecting DDoS attacks in encrypted network traffic in both offline and online case using fuzzy c-means clustering algorithm. In the method, they train the system with flow information such as conversation length, packet velocity, packet size averages, and flags. They build feature vectors form the information by also normalizing the values with min-max normalization. They have two different versions of the algorithm: an online and an offline version. The tests of the method are conducted using the Realistic Global Cyber Environment (RGCE), where the attacks can be simulated as realistically as possible. Slowloris, SSLsqueeze, and some advanced DDoS attacks were tested in the system and they found that the trivial cases such as Slowloris and SSLsqueeze were detected nearly 100% of the time, whereas the advanced DDoS attacks had only 70% accuracy when keeping the false positives to the minimum. Categorical classification of this method is clustering.
S3 Zolotukhin et al. (2016a) Increasing Web Service Availability by Detecting Application-Layer DDoS Attacks in Encrypted Traffic IEEE, Scopus 1
[S3] Zolotukhin et al. (2016a) study the application layer DDoS attacks in encrypted network traffic employing hierarchical, centroid- and density-based clustering algorithms and stacked auto-encoder (SAE). The features for clustering come from the packet header infor-mation and conversation to the server by each user. The conversations are mended together
S4 Zolotukhin et al. (2015) Data Mining Approach for Detection of DDoS Attacks Utilizing SSL/TLS Protocol Scopus 1
[S4] Zolotukhin et al. (2015) present a clustering-based anomaly-based detection method
S5 Petiz et al. (2014) Detecting DDoS Attacks at the Source Using Multiscaling Analysis IEEE 1
S6 Wang et al. (2015) DDoS attack protection in the era of cloud computing and Software-Defined Networking ScienceDirect 1
S7 Hoeve (2013) Detecting Intrusions in Encrypted Control Traffic ACM 1——感觉这种方法比较有效,先按照报文统计进行聚类,相同类别计算报文的编辑距离来判断内容相似性。
[S7] Hoeve (2013) explore an intrusion detection method for encrypted control traffic. A
S8 Amoli and Hämäläinen (2013) A Real Time Unsupervised NIDS for Detecting Unknown and Encrypted Net- work Attacks in High Speed Network IEEE 1——没懂。。。
[S8] Amoli and Hämäläinen (2013) have designed an NIDS to work with large amounts of
S9i Das, Sharma, and Bhattacharyya (2011) Detection of HTTP Flooding Attacks in Multiple Scenarios ACM 0
S10i Shiaeles et al. (2012) Real time DDoS detection using fuzzy estimators ScienceDirect 0
[S10i] Shiaeles et al. (2012) propose a detection method that uses the packets arrival times
S11 Chen, Chen, and Delis (2007) An Inline Detection and Prevention Framework for Distributed Denial of Service Attacks Scopus 1
S12i Lee et al. (2008) DDoS attack detection method using cluster analysis ScienceDirect 0
S13i Caulkins, Lee, and Wang (2005) A Dynamic Data Mining Technique for Intrusion Detection Systems ACM 0
https ddos检测——研究现状的更多相关文章
- CC 攻击检测研究现状
网络层ddos 是让去往银行的道路交通变得拥堵,无法使正真要去银行的人到达:常利用协议为网络层的,如tcp(利用三次握手的响应等待及电脑tcp 连接数限制)等应用层ddos 则是在到达银行后通过增办. ...
- 大数据DDos检测——DDos攻击本质上是时间序列数据,t+1时刻的数据特点和t时刻强相关,因此用HMM或者CRF来做检测是必然! 和一个句子的分词算法CRF没有区别!
DDos攻击本质上是时间序列数据,t+1时刻的数据特点和t时刻强相关,因此用HMM或者CRF来做检测是必然!——和一个句子的分词算法CRF没有区别!注:传统DDos检测直接基于IP数据发送流量来识别, ...
- 语义SLAM研究现状总结
博客转载自:https://blog.csdn.net/xiaoxiaowenqiang/article/details/81051010 原文标题:深度学习结合SLAM 语义slam 语义分割 端到 ...
- 全球知名的HTTPS网站检测工具-Qualys SSL Labs
推荐一个在线版全球知名的HTTPS网站检测工具-Qualys SSL Labs.Qualys SSL Labs同时也是很具有影响力的SSL安全和性能研究机构. SSL Labs会对HTTPS网站的证书 ...
- VR的国内研究现状及发展趋势
转载请声明转载地址:http://www.cnblogs.com/Rodolfo/,违者必究. 一.国内研究现状 我国虚拟现实技术研究起步较晚,与发达国家还有一定的差距. 随着计算机图形学.计算机系统 ...
- NLP+语篇分析(五)︱中文语篇分析研究现状(CIPS2016)
摘录自:CIPS2016 中文信息处理报告<第三章 语篇分析研究进展.现状及趋势>P21 CIPS2016 中文信息处理报告下载链接:http://cips-upload.bj.bcebo ...
- NLP+语义分析(四)︱中文语义分析研究现状(CIPS2016、角色标注、篇章分析)
摘录自:CIPS2016 中文信息处理报告<第二章 语义分析研究进展. 现状及趋势>P14 CIPS2016> 中文信息处理报告下载链接:http://cips-upload.bj. ...
- RNA测序研究现状与发展
RNA测序研究现状与发展 1 2,584 A+ 所属分类:Transcriptomics 收 藏 通常来说,某一个物种体内所有细胞里含有的DNA都应该是一模一样的,只是因为每一种细胞里所表达的R ...
- https ddos攻击——由于有了认证和加解密 后果更严重 看绿盟的产品目前对于https的ddos cc攻击需要基于内容做检测
如果web服务器支持HTTPS,那么进行HTTPS洪水攻击是更为有效的一种攻击方式,一方面,在进行HTTPS通信时,web服务器需要消耗更多的资源用来进行认证和加解密,另一方面,一部分的防护设备无法对 ...
随机推荐
- Integer.valueof 和 Integer.parseInt
System.out.println(Integer.valueOf("127")==Integer.valueOf("127")); System.out.p ...
- Mac/OSX上安装xshell
xshell没有mac版,且不愿意仅为一个程序运行一个虚拟机.怎么办?装上wine个来跑shell吧! 1.安装 WineBottler 过程略(制作.管理windows程序,类似CrossOver) ...
- spark2.1.1创建Pipeline
Pipeline 为流程,是Spark创建机器学习的一个流程控制的类 下面直接贴出创建的代码,以及整个流程 第一种: import org.apache.spark.ml.{Pipeline, Pip ...
- (转) SpringBoot非官方教程 | 第十一篇:springboot集成swagger2,构建优雅的Restful API
swagger,中文“拽”的意思.它是一个功能强大的api框架,它的集成非常简单,不仅提供了在线文档的查阅,而且还提供了在线文档的测试.另外swagger很容易构建restful风格的api,简单优雅 ...
- 1.2 Getting Started--Naming Conventions(命名约定)
Ember.js使用一个运行时解析器去连接你的对象而没有很多样板文件.作为一个开发者,如果你把code放到约定好的位置这个解析器会自动工作. 一.The Application 1. 当你 ...
- 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred) Solution
A. Find a Number Solved By 2017212212083 题意:$找一个最小的n使得n % d == 0 并且 n 的每一位数字加起来之和为s$ 思路: 定义一个二元组$< ...
- Terminal(终端) 在 OS X下如何快速调用
Terminal(终端) 在 OS X下如何快速调用 转载请注明原作者:文章如果对您有所启发或帮助,不介意您请我喝一杯咖啡 Terminal作为人机交流中极其重要的一部分,无论是在Windows. ...
- Flux 单向数据流
Flux 的核心就是一个简单的约定:视图层组件不允许直接修改应用状态,只能触发 action.应用的状态必须独立出来放到 store 里面统一管理,通过侦听 action 来执行具体的状态操作. 所谓 ...
- javascript模式(2)--模块模式
在nodeJs中,可以定义自己的模块,然后通过exports来暴露API.一般是这么写的:模块依赖,私有成员和要暴露的对象.在原生js中也可以有类似的写法来组织自己的代码.可以提供一个松耦合.结构清晰 ...
- zabbix-2.4.7环境部署与初始化安装
一.zabbix简介: zabbix的特点: - 安装与配置简单,学习成本低 - 支持多语言(包括中文) - 免费开源 - 自动发现服务器与网络设备 - 分布式监视以及WEB集中管理功能 - 可以无a ...