An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

 

 

Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤) which is the total number of keys to be inserted. Then Ndistinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print the root of the resulting AVL tree in one line.

Sample Input 1:

5
88 70 61 96 120

Sample Output 1:

70

Sample Input 2:

7
88 70 61 96 120 90 65

Sample Output 2:

88
#include<cstdio>
#include<algorithm>
using namespace std; struct Node{
int v;
int height;
Node* lchild;
Node* rchild;
}*root; int getHeight(Node* root);
void updateHeight(Node* root);
int getBalanceFactor(Node* root);
Node* NewNode(int v);
void Insert(Node* &root, int v);
void L(Node* &root);
void R(Node* &root); int main(){
int n,v;
scanf("%d",&n);
for(int i = ; i < n; i++){
scanf("%d",&v);
Insert(root,v);
}
printf("%d",root->v);
return ;
}
void Insert(Node* &root, int v){
if(root == NULL){
root = NewNode(v);
return;
}
if(root->v > v){
Insert(root->lchild,v);
updateHeight(root);
if(getBalanceFactor(root) == ){
if(getBalanceFactor(root->lchild) == ){
R(root);
}else if(getBalanceFactor(root->lchild) == -){
L(root->lchild);
R(root);
}
}
}else{
Insert(root->rchild,v);
updateHeight(root);
if(getBalanceFactor(root) == -){
if(getBalanceFactor(root->rchild) == -){
L(root);
}else if(getBalanceFactor(root->rchild) == ){
R(root->rchild);
L(root);
}
}
}
} Node* NewNode(int v){
Node* node = new Node;
node->v = v;
node->lchild = node->rchild = NULL;
node->height = ;
return node;
} void updateHeight(Node* root){
root->height = max(getHeight(root->lchild),getHeight(root->rchild))+;
} int getHeight(Node* root){
if(root == NULL) return ;
return root->height;
} int getBalanceFactor(Node* root){
return getHeight(root->lchild) - getHeight(root->rchild);
} void L(Node* &root){
Node* temp = root->rchild;
root->rchild = temp->lchild;
temp->lchild = root;
updateHeight(root);
updateHeight(temp);
root = temp;
} void R(Node* &root){
Node* temp = root->lchild;
root->lchild = temp->rchild;
temp->rchild = root;
updateHeight(root);
updateHeight(temp);
root = temp;
}

04-树5 Root of AVL Tree (25 分)的更多相关文章

  1. PTA 04-树5 Root of AVL Tree (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/668 5-6 Root of AVL Tree   (25分) An AVL tree ...

  2. PAT甲级:1066 Root of AVL Tree (25分)

    PAT甲级:1066 Root of AVL Tree (25分) 题干 An AVL tree is a self-balancing binary search tree. In an AVL t ...

  3. PAT 甲级 1066 Root of AVL Tree (25 分)(快速掌握平衡二叉树的旋转,内含代码和注解)***

    1066 Root of AVL Tree (25 分)   An AVL tree is a self-balancing binary search tree. In an AVL tree, t ...

  4. 1066 Root of AVL Tree (25分)(AVL树的实现)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  5. 04-树5 Root of AVL Tree (25 分)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  6. 【PAT甲级】1066 Root of AVL Tree (25 分)(AVL树建树模板)

    题意: 输入一个正整数N(<=20),接着输入N个结点的值,依次插入一颗AVL树,输出最终根结点的值. AAAAAccepted code: #define HAVE_STRUCT_TIMESP ...

  7. 04-树4. Root of AVL Tree (25)

    04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  8. pat04-树4. Root of AVL Tree (25)

    04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  9. pat 甲级 1066. Root of AVL Tree (25)

    1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  10. pat1066. Root of AVL Tree (25)

    1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...

随机推荐

  1. zz如何让你的婚姻天长地久?

    如果天长地久意味着一列永不出轨的火车,下面有关婚姻生活的战略就像制定一张准确的运行时刻表.因为成功的婚姻并非源于机运,所谓的七年之痒也不是空穴来风.对那些已婚男人来说,他们需要计划——为了一年比一年过 ...

  2. 在iOS项目中引入MVVM

    本文翻译自:http://www.objc.io/issue-13/mvvm.html.为了方便读者并节约时间,有些不是和文章主题相关的就去掉了.如果读者要看原文的话可以通过前面的url直接访问.作者 ...

  3. Python + selenium + unittest装饰器 @classmethod

    前言 前面讲到unittest里面setUp可以在每次执行用例前执行,这样有效的减少了代码量,但是有个弊端,比如打开浏览器操作,每次执行用例时候都会重新打开,这样就会浪费很多时间. 于是就想是不是可以 ...

  4. EBS R12 更改SYSADMIN密码

    SQL> select * from v$version; BANNER------------------------------------------------------------- ...

  5. 原创:MVC 5 实例教程(MvcMovieStore 新概念版:mvc5.0,EF6.01) - 3、创建项目

    说明:MvcMovieStore项目已经发布上线,想了解最新版本功能请登录 MVC 影视(MvcMovie.cn) 进行查阅.如需转载,请注明出处:http://www.cnblogs.com/Dod ...

  6. bootstrap-table简单使用

    开发项目时总想着能不能有一款插件包含分页,查询等常用功能,后来发现了bootstrap-table 直接看代码和效果图 <!DOCTYPE html> <html lang=&quo ...

  7. Android DatePicker / TimePicker 占空间太大的解决办法

    DatePicker 与 TimePicker 控件占用的空间是固定的,没有参数可以更改. 如果修改 length 和 width 属性,只会让控件被切割,显示将不完整.很多人说可以使用 scale ...

  8. 重新使用Eclipse建立安卓工程遇到的问题

    很早之前用过Eclipse建立安卓工程,很久没用了,最近打算用Eclipse开发安卓程序,我是用谷歌提供的Eclipse集成环境建立的安卓工程,发现有了一些变化,而且遇到一点问题,这几天不断学习,终于 ...

  9. python 杂谈

    python 当前文件导入自定义模块的时候,会默认执行一遍 python使用的变量必须是已经定义或者声明过的.

  10. 【OCP认证12c题库】CUUG 071题库考试原题及答案(26)

    26.choose two Examine the structure of the PRODUCTS table. Which two statements are true? A) EXPIRY_ ...