LOJ2229. 「BJOI2014」想法(随机化)
题目链接
题解
评分标准提示我们可以使用随机化算法。
首先,我们为每一道编号在 \([1, m]\) 以内的题目(这些题目也对应了 \(m\) 个初始的想法)赋一个 \([0, d]\) 以内的随机权值。接下来,我们可以通过 \(O(n)\) 的递推来求出每一道编号在 \((m, n]\) 以内的题目所包含的所有想法对应权值的最小值。记第 \(i(i > m)\) 道题目包含 \(x_i\) 个不同的想法,且这些想法对应权值的最小值为 \(w_i\),那么有 \(w_i\) 的期望值为 \(\frac{d}{x_i + 1}\)。
我们试着证明一下上述结论。在此之前,我们先思考一个值域较小但更为普遍的问题:在 \([0, 1]\) 内选择 \(x\) 个随机变量(变量之间互相独立,且在 \([0, 1]\) 内均匀随机),求选出的这 \(x\) 个变量中第 \(k\) 小值的期望。
我们将该问题做一个转化:求选出的这 \(x\) 个变量中第 \(k\) 小值的期望,等价于求再在 \([0, 1]\) 内选择一个随机变量,求选出的这个变量小于之前选出的 \(x\) 个变量中第 \(k\) 小值的概率。
经过转化之后的问题显然就很好做了。我们考虑按照数值从小到大给这 \(x + 1\) 个变量赋上排名。忽略变量相等的情况,那么这 \(x + 1\) 个变量的排名构成了一个 \(x + 1\) 的排列,且显然,产生各个排列的概率是相同的。\(x + 1\) 的全排列数为 \((x + 1)!\),我们考虑用合法的排列数除以全排列数来求概率,这样,问题转化为了求共有多少种 \(x + 1\) 的排列满足排列的最后一个位置的值不超过 \(k\)。显然合法的排列总数为 \(k \times x!\)。因此概率即为 \(\frac{k \times x!}{(x + 1)!} = \frac{k}{x + 1}\),那么可以得到在 \([0, 1]\) 内选出的 \(x\) 个随机变量中第 \(k\) 小值的期望也为 \(\frac{k}{x + 1}\)。
这个结论其实被直接放在了[ZJOI2015]地震后的幻想乡一题的提示中。
这样,当随机权值的值域为 \([0, d]\) 时,选出 \(x\) 个随机权值的最小值 \(w\) 的期望即为 \(\frac{1}{x + 1} \times d\)。若求得 \(w\) 的期望 \(E\),那么可得 \(x = \frac{d}{E} - 1\)。
对于第 \(i\) 个想法,我们可以通过多次随机化求平均数来得到 \(w_i\) 的期望的近似值。设随机化的次数为 \(T\),那么总时间复杂度为 \(O(Tn)\)。
代码
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int n, m, from[N][2], a[N];
double answer[N];
int main() {
scanf("%d%d", &n, &m);
int M = 100000000 / n;
for (int i = m + 1; i <= n; ++i) {
scanf("%d%d", &from[i][0], &from[i][1]);
}
for (int tt = 1; tt <= M; ++tt) {
for (int i = 1; i <= m; ++i) {
a[i] = rand();
}
for (int i = m + 1; i <= n; ++i) {
a[i] = min(a[from[i][0]], a[from[i][1]]);
answer[i] += (double) a[i] / M;
}
}
for (int i = m + 1; i <= n; ++i) {
answer[i] = RAND_MAX / answer[i] - 1;
printf("%.0lf\n", answer[i]);
}
return 0;
}
LOJ2229. 「BJOI2014」想法(随机化)的更多相关文章
- LOJ#2230. 「BJOI2014」大融合
LOJ#2230. 「BJOI2014」大融合 题目描述 小强要在$N$个孤立的星球上建立起一套通信系统.这套通信系统就是连接$N$个点的一个树.这个树的边是一条一条添加上去的. 在某个时刻,一条边的 ...
- 【LOJ】#2230. 「BJOI2014」大融合
题解 我现在真是太特么老年了 一写数据结构就颓废,难受 这题就是用lct维护子树 ???lct怎么维护子树 这样想,我们给每个点记录虚边所在的子树大小,只发生在Access和link的时候 这样的话我 ...
- loj2230 「BJOI2014」大融合
LCT裸题 我LCT学傻了这题明显可以树剖我不会树剖了 本来的siz是Splay上的子树和,并没有什么用. 所以每个点维护虚子树和和子树和 虚子树和即虚边连接的子树和,且只有在access和link操 ...
- Loj 2230. 「BJOI2014」大融合 (LCT 维护子树信息)
链接:https://loj.ac/problem/2230 思路: 设立siz数组保存虚点信息,sum表示总信息 维护子树信息link操作和access操作需要进行一些改动 可参考博客:https: ...
- loj2341「WC2018」即时战略(随机化,LCT/动态点分治)
loj2341「WC2018」即时战略(随机化,LCT/动态点分治) loj Luogu 题解时间 对于 $ datatype = 3 $ 的数据,explore操作次数只有 $ n+log n $ ...
- loj3161「NOI2019」I 君的探险(随机化,整体二分)
loj3161「NOI2019」I 君的探险(随机化,整体二分) loj Luogu 题解时间 对于 $ N \le 500 $ 的点,毫无疑问可以直接 $ O(n^2) $ 暴力询问解决. 考虑看起 ...
- 「译」JUnit 5 系列:扩展模型(Extension Model)
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...
- 「2014-3-18」multi-pattern string match using aho-corasick
我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...
- LOJ_2305_「NOI2017」游戏 _2-sat
LOJ_2305_「NOI2017」游戏 _2-sat 题意: 给你一个长度为n的字符串S,其中第i个字符为a表示第i个地图只能用B,C两种赛车,为b表示第i个地图只能用A,C两种赛车,为c表示第i个 ...
随机推荐
- MyBatis 实用篇(二)配置文件
MyBatis 实用篇(二)配置文件 一.全局配置 全局配置:http://www.mybatis.org/mybatis-3/zh/configuration.html <?xml versi ...
- App启动页设计实例与技巧
App启动页,也称闪屏页,最初是为缓解用户等待Web/iOS/Android App数据加载的焦虑情绪而出现,后被设计师巧妙用于品牌文化展示,服务特色介绍以及功能界面熟悉等平台进行设计,被赋予了更加丰 ...
- XtrasReport 标签打印
var lblList = new List<product_LblPrt_tmp>(); using (JL_MFGEntities ctx = new JL_MFGEntities() ...
- Apache配置伪静态
Apache配置伪静态 注意:本文中关于Apache的配置修改,一定要记得重启Apache服务 伪静态的实现有多种方法,比如通过获取path_info信息使用php逻辑来达到伪静态,使用Apache提 ...
- Linux 基础教程 41-系统关机和重启
在Linux系统中,仅仅是关机和重启相关的命令就至少有5个,shutdown. halt.poweroff.reboot.init.各个命令作用如下所示: 命令 说明 shutdown 可用于 ...
- jmeter 调用jar包 本地加密
1.因为加密接口是有我们自己加密方式,所有加密包由开发提供,获得加密包后方式jmeter目录/lib/ext文件夹中 2.选择引入加密包 3.添加BeanShell Sampler和Debug Sam ...
- struct pollfd
struct pollfd 2010年04月15日 星期四 下午 03:59 int poll (struct pollfd *fds, size_t nfds , int timeout); str ...
- wp调用百度服务api
通过百度开放平台申请api成功后,百度会提供一个application key简称ak和一个security key简称sk. 看一下某个服务url的格式 1. url前缀 2. 服务类型 3. 参数 ...
- leetcode 验证回文串
给定一个字符串,验证它是否是回文串,只考虑字母和数字字符,可以忽略字母的大小写. 说明:本题中,我们将空字符串定义为有效的回文串. 示例 1: 输入: "A man, a plan, a c ...
- c# 多线程线程池基础
线程池的作用 在上一篇中我们了解了创建和销毁线程是一个昂贵的操作,要耗费大量的时间,太多的线程会浪费内存资源,当线程数量操作计算机CPU的数量后操作系统必须调度可运行的线程并执行上下文切 ...