【HDU4565】So Easy!

题面

要你求

\[\lceil (a+\sqrt b)^n \rceil \% m
\]

其中\(0<a,m<2^{15},(a-1)^2<b<a^2,0<b,n<2^{31}\)

题解

这个向上取整放在这里很丑对吧,我们化一下柿子。

\[\because (a-1)^2<b<a^2\\
\therefore a-\sqrt b
\]

因为\((a-\sqrt b)^n\)是个很小的小数且\(a-\sqrt b\)与\(a+\sqrt b\)共轭,所以

\[(a-\sqrt b)^n+(a+\sqrt b)^n=\lceil (a+\sqrt b)^n \rceil
\]

设\(C_n=(a-\sqrt b)^n+(a+\sqrt b)^n\)

\[C_n*\left((a-\sqrt b)+(a+\sqrt b)\right) \\
= (a+\sqrt b)^{n+1}+(a-\sqrt b)^{n+1}+(a^2-b)*(a-\sqrt b)^{n-1}+(a^2-b)*(a+\sqrt b)^{n-1}\\
= C_{n+1}+(a^2-b)C_{n-1}\\
\Leftrightarrow C_{n+1}=2a*C_n+(b-a^2)C_{n-1}
\]

然后构一个矩阵,就可以快速幂了:

\[ \left[
\begin{matrix}
2a & b-a^2\\
1 & 0\\
\end{matrix}
\right]
*
\left[
\begin{matrix}
C_{n} \\
C_{n-1} \\
\end{matrix}
\right]
=
\left[
\begin{matrix}
C_{n+1} \\
C_n \\
\end{matrix}
\right]
\]

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
ll A, B, N, Mod;
struct Matrix {
ll m[2][2];
void clear() { memset(m, 0, sizeof(m)); }
void init() { for (int i = 0; i < 2; i++) m[i][i] = 1; }
ll *operator [] (int id) { return m[id]; }
Matrix operator * (const Matrix &b) {
Matrix res; res.clear();
for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++)
for (int k = 0; k < 2; k++)
res[i][j] = (res[i][j] + m[i][k] * b.m[k][j] % Mod) % Mod;
return res;
}
} S, T;
int main () {
while (~scanf("%lld%lld%lld%lld", &A, &B, &N, &Mod)) {
S.clear(), T.clear();
S[0][0] = (A * 2) % Mod, S[1][0] = 2;
T[0][0] = (A * 2) % Mod, T[0][1] = ((B - A * A % Mod) % Mod + Mod) % Mod;
T[1][0] = 1, T[1][1] = 0;
Matrix res; res.clear(); res.init();
while (N) { if (N & 1) res = res * T; N >>= 1; T = T * T; }
S = res * S;
printf("%lld\n", (S[1][0] % Mod + Mod) % Mod);
}
return 0;
}

【HDU4565】So Easy!的更多相关文章

  1. 【BZOJ3450】Tyvj1952 Easy 期望DP

    [BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...

  2. 【bzoj3450】Tyvj1952 Easy

    题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有 ...

  3. 【AGC005F】Many Easy Problems FFT 容斥原理

    题目大意 给你一棵树,有\(n\)个点.还给你了一个整数\(k\). 设\(S\)为树上某些点的集合,定义\(f(S)\)为最小的包含\(S\)的联通子图的大小. \(n\)个点选\(k\)个点一共有 ...

  4. 【AGC005F】Many Easy Problems (NTT)

    Description ​ 给你一棵\(~n~\)个点的树和一个整数\(~k~\).设为\(~S~\)为树上某些点的集合,定义\(~f(S)~\)为最小的包含\(~S~\)的联通子图的大小.\(~n~ ...

  5. 【AGC005F】Many Easy Problems

    Description 题目链接 对于每个\(k\),统计任选\(k\)个点作为关键点的"最小生成树"的大小之和 Solution 正向想法是枚举或者计算大小为\(x\).叶子数目 ...

  6. 【题解】An Easy Problem

    题目描述 给定一个正整数N,求最小的.比N大的正整数M,使得M与N的二进制表示中有相同数目的1. 举个例子,假如给定的N为78,其二进制表示为1001110,包含4个1,那么最小的比N大的并且二进制表 ...

  7. 【模拟】NEERC15 E Easy Problemset (2015-2016 ACM-ICPC)(Codeforces GYM 100851)

    题目链接: http://codeforces.com/gym/100851 题目大意: N个人,每个人有pi个物品,每个物品价值为0~49.每次从1~n顺序选当前这个人的物品,如果这个物品的价值&g ...

  8. 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT

    [题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...

  9. 【CodeForces】913 D. Too Easy Problems

    [题目]D. Too Easy Problems [题意]给定n个问题和总时限T,每个问题给定时间ti和限制ai,当解决的问题数k<=ai时问题有效,求在时限T内选择一些问题解决的最大有效问题数 ...

随机推荐

  1. JavaScript浏览器对象模型(BOM)之history对象

    history 对象是 window 对象的属性,它保存着用户上网的记录,从窗口被打开的那一刻算起. 一.history对象的属性 可以通过判断 history.length,得到是否有历史记录和记录 ...

  2. mvvm模型

  3. Java集合源码 -- Map映射和Set集合

    Map接口 Map接口是有一个映射表, 存储键和值, 它提供了两个通用的接口HashMap 和 TreeMap HashMap 是散列映射表, 对键散列; Tree是树映射表, 对键进行排序,并将其组 ...

  4. chrome下载离线安装包的方法

    https://www.google.com/chrome/browser/desktop/index.html?system=true&standalone=1,一般默认下载稳定版,如果需要 ...

  5. topk两种解法

    1.这个通过partition实现topk,时间复杂度是o(logn*logn),也就是0(n),但需要修改原数组的顺序 下面这个代码本身有一些错误,并且throw excption会在牛客上报错 c ...

  6. 知乎TensorFlow入门学习记录

    知乎地址:https://zhuanlan.zhihu.com/p/30487008 import tensorflow as tf a=tf.placeholder(tf.int16) # 接受的数 ...

  7. 查看mysql中所有表的数据记录

    select table_name,table_rows from tables where TABLE_SCHEMA = 'database name' order by table_rows de ...

  8. 过滤ST/退市股票

    nest_dict = {'code': {1: '000033', 2: '002113', 3: '002260', 4: '002512'}, 'name': {1: '新都退', 2: 'ST ...

  9. C#中枚举

    1.枚举是一组命名整形常量,枚举类型使用Enum关键字进行声明的.在C#中枚举是值数据类型,枚举包含自己的值,且不能继承或传递继承.

  10. 【腾讯敏捷转型No.5】需求没做完可以发布嘛

    很多人对于敏捷的第一直觉就是“快”,开发快,测试快,发布快,并不知道如何把这个“快”应用到敏捷实践中,下面我们来分析一下导致工作效率低的核心原因.没有使用敏捷之前,在大多数情况下,项目管理都需要开各种 ...