N个苹果分给M个人,有多少种分法
每次分配一个苹果出去,然后再分配N-1个苹果。这里有个注意的地方就是,分那1个苹果的时候,假设还有N个苹果,不是从第一个人开始分,而是从N+1个苹果分配的位置开始,不然的话会产生重复的解。所以i=p不是i=0。
List<Integer> result = Lists.newArrayList(0, 0, 0); @Test
/**
* N个苹果 M个人分
*/
public void testMN() {
foo(3, 3, 0);
} private void foo(int n, int m, int p) {
if (n == 0) {
System.out.println(result);
return;
}
for (int i=p; i<m; i++) {
result.set(i, result.get(i) + 1);
foo(n-1, m, i);
result.set(i, result.get(i) - 1);
}
}
output
[3, 0, 0]
[2, 1, 0]
[2, 0, 1]
[1, 2, 0]
[1, 1, 1]
[1, 0, 2]
[0, 3, 0]
[0, 2, 1]
[0, 1, 2]
[0, 0, 3]
N个苹果分给M个人,有多少种分法的更多相关文章
- 将n个东西分成n1,n2,n3,n4,....nr 共 r组分给r个人有多少种分法。
(n!/(n1! *n2! *n3!..nr!) ) * r!/( 同数量组A的数量! 同数量组B的数量!....) 比方20个东西分成2,2,,2,2 3,3,3,3 8组分给8个人有多少种 ...
- 有n个台阶,如果一次只能上1个或2个台阶,求一共有多少种上法
// n级台阶,求多少种跳法.cpp : Defines the entry point for the console application. // /* 思路: 如果只有一级台阶,n=1,很明显 ...
- 题目描述: k一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
时间限制:1秒 空间限制:32768k 斐波那契数列指的是这样一个数列: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,9 ...
- 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
// test14.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> #include< ...
- 变态跳台阶-一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
class Solution { public: int jumpFloorII(int number) { ) ; ) ; *jumpFloorII(number-); } };
- 跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
class Solution { public: int jumpFloor(int number) { ) ; ) ; )+jumpFloor(number-); } }; 如果先建立数组,然后利用 ...
- CSP-J2019 把8个同样的球放在同样的5个袋子里,允许有的袋子空着不放,问共有多少种不同的分法?
把8个同样的球放在同样的5个袋子里,允许有的袋子空着不放,问共有多少种不同的分法? 提示:如果8个球都放在一个袋子里,无论是放哪个袋子,都只算同一种分法. 解析: 把问题合成,先思索5个袋子都不空的状 ...
- n个元素的入栈顺序有多少种出栈顺序?
问题:w1.w2.w3.w4.w5,5个元素将会按顺序入栈,求出栈顺序有多少种情况. 先写一下结论方便记忆: 1个元素:1种 2个元素:2种 3个元素:5种 4个元素:14种 5个元素:42种 简单的 ...
- N个数依次入栈,出栈顺序有多少种
题目:N个数依次入栈,出栈顺序有多少种? 首先介绍一下卡特兰数:卡特兰数前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 2 ...
随机推荐
- 498_Diagonal-Traverse
目录 498_Diagonal-Traverse Description Solution Java solution Python solution 1 Python solution 2 Pyth ...
- (完整)爬取数据存储之TXT、JSON、CSV存储
一.文件存储 1. TXT文本存储 例:知乎发现页面,获得数据存成TXT文本 import requests from pyquery import PyQuery as pq url="h ...
- 第8章 scrapy进阶开发(2)
8-4 selenium集成到scrapy中 其实也没什么好说的直接上代码 这是在middlewares.py中定义的一个class: from selenium.common.exceptions ...
- C# 核心语法-反射(反射类型、方法、构造函数、属性,实现可配置可扩展,完成数据库访问类反射封装)
反射是.NET中的重要机制,通过反射,可以在运行时获得程序或程序集中每一个类型(包括类.结构.委托.接口和枚举等)的成员和成员的信息.有了反射,即可对每一个类型了如指掌.另外我还可以直接创建对象,即使 ...
- 对.net事件的看法
对.net事件的看法 一.事件的本质 事件是软件系统里的两个子系统之间,或者两个模块之间,或者两个对象之间发送消息,并处理消息的过程.在面向对象的世界里,就可以统一认为是两个对象之间的行为. 两个对象 ...
- 利用三层判断sql数据库中编码是否已经存在(个人拙作,不喜勿喷)
本人.Net新手,初学三层便想记录写笔记,以供像自己一样的新人去学习,大神就不用看啦 Dal层: /// 判断编码是否存在 /// </summary> /// <param nam ...
- ssh 连接慢问题
连接先看报错: There were 11 failed login attempts since the last successful login. 先前有上百上千失败login,被攻击了,把短时 ...
- Spring入门(一)— IOC、DI
一.Spring介绍 Spring 是一个开源框架,是为了解决企业应用程序开发复杂性而创建的.框架的主要优势之一就是其分层架构,分层架构允许您选择使用哪一个组件,同时为 J2EE 应用程序开发提供集成 ...
- Angular中父子组件双向绑定传值
下面为大家展示一个较为简单的ng父子组件双向绑定传值,下面是父组件页面 这个页面的大概功能就是父组件(红色)通过输入框输入内容反映到子组件上进行展示,并且进行了投影, 子组件(橙黄色)通过Input输 ...
- POJ P2828 Buy Ticket——线段树的其他信息维护
Description Railway tickets were difficult to buy around the Lunar New Year in China, so we must get ...