Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentagonal number, I can only wonder if we have to deal with septagonal numbers in Problem 46. Anyway the problem reads
Pentagonal numbers are generated by the formula, Pn=n(3n-1)/2. The first ten pentagonal numbers are:
1, 5, 12, 22, 35, 51, 70, 92, 117, 145, …
It can be seen that P4 + P7 = 22 + 70 = 92 = P8. However, their difference, 70 – 22 = 48, is not pentagonal.
Find the pair of pentagonal numbers, Pj and Pk, for which their sum and difference is pentagonal and D = |Pk – Pj| is minimised; what is the value of D?
I have found a solution which I will present to you in just a few lines, but I must admit that I haven’t been able to justify why it is the right solution it gives us. The solution I have made just finds a solution to the problem which happens to the right solution.
I did not want to generate a list of pentagonal numbers, so I wanted to make a small function which checks if a given number is pentagonal by checking if the inverse function yields an integer, just like in the solution to Problem 42. We could rather easily calculate the inverse function as we did with the inverse function for triangular numbers, or we can cheat and peak at the pentagonal number entry at Wikipedia.
The inverse function is
That enables us to make a C# function that checks if a number is pentagonal
1
2
3
4
|
private bool isPentagonal( int number) { double penTest = (Math.Sqrt(1 + 24 * number) + 1.0) / 6.0; return penTest == (( int )penTest); } |
Once we have this crucial function we can make two nested loops to check pentagonal numbers until we find two where the sum and difference are pentagonal as well. I am frustrated since I can’t figure out why this one is the first. I can prove that it is indeed minimal by testing other numbers until the difference of two numbers reach the result of this problem. However I haven’t done that.
The outer loop of the algorithm counts upwards generating and the inner loop counting downwards testing all pentagonal numbers less than the one generated by the outer loop. The code looks like
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
int result = 0; bool notFound = true ; int i = 1; while (notFound) { i++; int n = i * (3 * i - 1) / 2; for ( int j = i-1; j > 0; j--) { int m = j * (3 * j - 1) / 2; if (isPentagonal(n - m) && isPentagonal(n + m)) { result = n-m; notFound = false ; break ; } } } |
and gives the result
1
2
3
|
k = 2167, j = 1020 The value of D is 5482660 Solution took 35 ms |
Wrapping up
I can see that many other people also can’t give the definitive answer to why the result is correct. If you understand the problem better than I do, please let me know exactly why I find the right solution.
You can as usual find the source code for the problem here.
Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.的更多相关文章
- Project Euler 44 Sub-string divisibility( 二分 )
题意:五边形数由公式Pn=n(3n−1)/2生成,在所有和差均为五边形数的五边形数对Pj和Pk中,找出使D = |Pk − Pj|最小的一对:此时D的值是多少? 思路:二分找和差 /********* ...
- Python练习题 048:Project Euler 021:10000以内所有亲和数之和
本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable ...
- project euler 169
project euler 169 题目链接:https://projecteuler.net/problem=169 参考题解:http://tieba.baidu.com/p/2738022069 ...
- Python练习题 039:Project Euler 011:网格中4个数字的最大乘积
本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...
- Python练习题 033:Project Euler 005:最小公倍数
本题来自 Project Euler 第5题:https://projecteuler.net/problem=5 # Project Euler: Problem 5: Smallest multi ...
- [project euler] program 4
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...
- Python练习题 029:Project Euler 001:3和5的倍数
开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...
- Project Euler 9
题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...
- 【Project Euler 8】Largest product in a series
题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...
随机推荐
- (转)生活中的OO智慧——大话面向对象五大原则
一·单一职责原则(Single-Responsibility Principle) 定义:一个对象应该只包含单一的职责,并且该职责被完整地封装在一个类中. 宿舍里并不能好好学习,自习还是得去图书馆.这 ...
- WPF中设置Border的BorderThickness属性会让背景图片产生模糊感
<!--设置BorderThickness会让border的Background图片看起来有模糊感--> <Border x:Name="border" Bord ...
- 转载:GitHub 新手详细教程
GitHub 新手详细教程 https://blog.csdn.net/Hanani_Jia/article/details/77950594
- TCP/IP协议的三次握手及实现原理
TCP/IP是很多的不同的协议组成,实际上是一个协议组,TCP用户数据报表协议(也称作TCP传输控制协议,Transport Control Protocol.可靠的主机到主机层协议.这里要先强调一下 ...
- 记一次接口调用耗时服务端PHP-FPM配置调优
最近测试人员不时有反馈,APP首页打开会出现除了基本的页面布局,需要展示数据的地方都是空白. 想着最近首页接口有过调整,新增数据.会不会是接口改动导致的?? 但APP首页接口都是读取redis的,应该 ...
- SVN相关命令
从http://subversion.tigris.org获取subversion for windows的版本,安装之后就有了svn.exe这个基于命令行的客户端工具.当然服务器端的程序也有了,这里 ...
- Apache mod_rewrite
mod_rewrite是Apache的一个非常强大的功能,它可以实现伪静态页面.下面我详细说说它的使用方法!对初学者很有用的哦! 1.检测Apache是否支持mod_rewrite phpinfo() ...
- 使用AngularJS 添加行修改、删除表格数据
https://blog.csdn.net/xin_x1n/article/details/53070144 <html xmlns="http://www.w3.org/1999/x ...
- .net mvc 获取acion 返回类型
1..net core 中获取 public override void OnActionExecuted(ActionExecutedContext context) { var descripto ...
- fb登陆遇到傻逼问题
centos中curl需要ssl的支持, 所以我重新安装了curl,并安装了openssl-devel,这个是依赖,必须的. so 完美