写在前面的话: 在第一学期做项目的时候用到过相应的知识,觉得挺有趣的,就记录整理了下来,基于C/C++语言 原贴地址:https://helloacm.com/cc-linear-regression-tutorial-using-gradient-descent/ ---------------------------------------------------------------前言---------------------------------------------------…
一.梯度下降法 优点:即使特征变量的维度n很大,该方法依然很有效 缺点:1)需要选择学习速率α 2)需要多次迭代 二.正规方程法(Normal Equation) 该方法可以一次性求解参数Θ 优点:1)不需要选择α 2)不用多次迭代,一次求解 3)正规方程法不需要归一化处理 缺点:逆矩阵的计算量比较大,尤其当特征变量的维度n很大时:计算逆矩阵的运算量大概是矩阵维度的3次方. 总结:当特征变量维度n较大时(n>=10000),选择梯度下降法:当n值较小时(n<10000),选择正规方程法求解Θ.…
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 4.2 梯度下降法 有了上一节的最小二乘法做基准,我们这次用梯度下降法求解w和b,从而可以比较二者的结果. 4.2.1 数学原理 在下面的公式中,我们规定x是样本特征值(单特征),y是样本标签值,z是预测值,下标 \(i\) 表示其中一个样本. 预设函数(Hypothesis Function) 为一个线性函数: \[z_i = x_i \cdot w…
# Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussian kernel with # multiple classes on the iris dataset. # # Gaussian Kernel: # K(x1, x2) = exp(-gamma * abs(x1 - x2)^2) # # X : (Sepal Length, Petal Wi…
iris二分类 # Linear Support Vector Machine: Soft Margin # ---------------------------------- # # This function shows how to use TensorFlow to # create a soft margin SVM # # We will use the iris data, specifically: # x1 = Sepal Length # x2 = Petal Width…
本文讲梯度下降(Gradient Descent)前先看看利用梯度下降法进行监督学习(例如分类.回归等)的一般步骤: 1, 定义损失函数(Loss Function) 2, 信息流forward propagation,直到输出端 3, 误差信号back propagation.采用“链式法则”,求损失函数关于参数Θ的梯度 4, 利用最优化方法(比如梯度下降法),进行参数更新 5, 重复步骤2.3.4,直到收敛为止 所谓损失函数,就是一个描述实际输出值和期望输出值之间落差的函数.有多种损失函数的…
网上对于线性回归的讲解已经很多,这里不再对此概念进行重复,本博客是作者在听吴恩达ML课程时候偶然突发想法,做了两个小实验,第一个实验是采用最小二乘法对数据进行拟合, 第二个实验是采用梯度下降方法对数据集进行线性拟合,下面上代码: 最小二乘法: #!/usr/bin/env python #encoding:UTF-8 import numpy as np import matplotlib.pyplot as plt N=10 X=np.linspace(-3, 3, N) Y=(X+10.0)…
梯度下降法是非常常见的优化方法,在神经网络的深度学习中更是必会方法,但是直接从深度学习去实现,会比较复杂.本文试图使用梯度下降来优化最简单的LSR线性回归问题,作为进一步学习的基础. import numpy as np import pandas as pd from numpy import * from pandas import * import matplotlib.pyplot as plt x = np.array([[1,2],[2,1],[3,2.5],[4,3], [5,4]…
本文主要使用了对数几率回归法与线性判别法(LDA)对数据集(西瓜3.0)进行分类.其中在对数几率回归法中,求解最优权重W时,分别使用梯度下降法,随机梯度下降与牛顿法. 代码如下: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2017-05-09 15:03:50 # @Author : whb (whb@bupt.edu.cn) # @Link : ${link} # @Version : $Id$ import numpy a…
梯度下降法及一元线性回归的python实现 一.梯度下降法形象解释 设想我们处在一座山的半山腰的位置,现在我们需要找到一条最快的下山路径,请问应该怎么走?根据生活经验,我们会用一种十分贪心的策略,即在现在所处的位置上找到一个能够保证我们下山最快的方向,然后向着该方向行走:每到一个新位置,重复地应用上述贪心策略,我们就可以顺利到达山底了.其实梯度下降法的运行过程和上述下山的例子没有什么区别,不同的是我们人类可以凭借我们的感官直觉,根据所处的位置来选择最佳的行走方向,而梯度下降法所依据的是严格的数学…