先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N integers a 1, a 2, -, a N, and M, K. She says each integers 1 ≤ a i ≤ M. And now Alice wants to ask for each d = 1 to M, how many different sequences b…
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式. ,其中为素数 2) 约数和公式: 对于已经分解的整数,A的所有因子之和为 3) 同余模公式: (a+b)%m=(a%m+b%m)%m (a*b)%m=(a%m*b%m)%m 1: 对A进行素因子分解 这里如果先进行筛50000内的素数会爆空间,只能用最朴素的…
题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k).N'为N的k进制表示的各位数字之和.输入x,y,k,输出root(x^y,k)的值 (这里^为乘方,不是异或),2=<k<=16,0<x,y<2000000000,有一半的测试点里 x^y 会溢出int的范围(>=2000000000) 输入: 每组测试数据包括一行,x(0<…
题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Persona5 is a famous video game. In the game, you are going to build relationship with your friends. You have N friends and each friends have his upper b…
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b /= ; } return ans; } 快速幂取模运算 公式: 最终版算法: int PowerMod(int a, int b, int c) { ; a = a % c; ) { = = )ans = (ans * a) % c; b = b/; a = (a * a) % c; } retur…
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit][Status][Discuss] Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能…
  Carmichael Numbers  An important topic nowadays in computer science is cryptography. Some people even think that cryptography is the only important field in computer science, and that life would not matter at all without cryptography. Alvaro is one…
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][Status][Discuss] Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数…
http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两个合起来比较明白…… 题意:求1~n!中与m!互质的数的数量(mod R). ∵由欧几里得算法得gcd(a,b)=gcd(b,a%b) ∴gcd(a+b,b)=gcd(b,(a+b)%b)=gcd(b,a) 即 gcd(a,b)=gcd(a+b,b) 推广:gcd(a,b)=gcd(a+k*b,b)…
题目:求a^b*c%mod; 其中b<=10^100000; 是不是很大..... /*当你要计算 A^B%C的时候 因为此题中的B很大,达到10^100000,所以我们应该联想到降幂公式. 降幂公式:A^B%C = A^(B%phi(C) + phi(C))%C 分两种情况: 当B<=phi(C)时,直接用快速幂计算A^B mod C 当B>phi(C)时,用快速幂计算A^(B mod phi(C)+phi(C)) mod C */ #include <cstdio> #i…
沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数据极限范围内所有的逆元崩出来就行了... ... 最后,附上丑陋的代码... ... #include <stdio.h> #define LL long long int prim[5000001],n,m,t,p,env[10000001],fac[10000001],f[10000001],…
传送门 常规数论题,利用欧拉函数的相关性质. 题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$.然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) \times N!} {M!}$.欧拉函数并不是完全积性函数,所以$M!$的欧拉函数值并不能很容易的求出来.但是根据欧拉函数的式子,可以发现$\phi (M!)$的值其实也可以预处理出来,即$\phi(M!)=M! \prod\limits ^{P_i \in [2,M]} (1-\frac{1}…
题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果.   Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000000) Output   输出走法的数量 Mod 10^9 + 7. Input示例 2 3 Output示例 3 题意: 中文的就不说了; 思路: 这题用dp…
题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\] 即 \[N!\prod(p_i - 1)(\prod p_i)^{-1}\] 预处理一下,都是线性复杂度. 注意: N=1的情况 long long 所以,数论题一定要注意各种特殊情况和longlong 代码 #include <bits/stdc++.h> #define ll long l…
由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中所有质数.那么这个前缀积就可以预处理了. 当n.m大于p的时候是可能有问题的,数据里没有就懒得讨论了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include&…
这道题我写了两种写法 一种利用逆元 a/b%mod=a*c%mod; (c是b的逆元)易得2的逆元就是5~~~04: 一种是矩阵快速幂 利用递推式得出结论 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int read(){ ,f=,c=getchar(); ; c=getchar();} +(c-'); c=getchar();} return ans*f;…
前言 初等数论在OI中应用的基础部分,同机房的AuSquare和zhou2003君早就写完了,一直划水偷懒的Hk-pls表示很方,这才开始了这篇博客. \(P.S.\)可能会分部分发表. Base-1 筛法求素数 埃式筛素数 问题:求\([1,n]\)中的所有素数 总体思路就是在\([2,n]\)中每当我们找到一个新的素数,在把它加入我们的素数队列的同时我们把它的倍数全部打上标记(包括它自己),下一个没有被标记的数就是新的素数. void find_prime(int n){ memset(us…
题目链接:https://www.nowcoder.com/acm/contest/141/H 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K 64bit IO Format: %lld 题目描述 Eddy has solved lots of problem involving calculating the number of coprime pairs within some range. This problem can be so…
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][Status][Discuss] Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非…
https://blog.csdn.net/Lytning/article/details/24432651    记牢通式 =x((p1-1)/p1) * ((p2-1)/p2)....((pn-1)/pn) 求一个整数的欧拉函数: int eular(int n){ int res = n, x = n; for(int i = 2; i*i <= x; i++){ if(x % i == 0){ //是其中的一个质因数 res = res/i*(i-1);//保证为整数 且不会溢出 whi…
[bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆元 p[i]-1 处理一下前缀积inv[x]= 然后答案就是N!*inv[x] /* http://www.cnblogs.com/karl07/ */ #include <cstdlib> #include <cstdio> #include <cstring> #inc…
埃氏筛法求素数和构造素数表求素数是一个道理. 首先,列出从2开始的所有自然数,构造一个序列: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ... 取序列的第一个数2,它一定是素数,然后用2把序列的2的倍数筛掉: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ... 取新序列的第一个数3,它一定是素数,然后用3把序列的3的倍…
素数总是一个比较常涉及到的内容,掌握求素数的方法是一项基本功. 基本原则就是题目如果只需要判断少量数字是否为素数,直接枚举因子2 ..N^(0.5) ,看看能否整除N. 如果需要判断的次数较多,则先用下面介绍的办法预处理. 一般的线性筛法 首先先介绍一般的线性筛法求素数 void make_prime() { memset(prime, , sizeof(prime)); prime[]=false; prime[]=false; ; ; i<N; i++) if (prime[i]) { pr…
本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉 题目大意 给定n,m,求在1到n!内与m!互质的个数,答案要对r取模. 输入格式: 第一行为两个整数T,R.R<=10^9+~~10,T<=10000,表示该组中测试数据数目,R为模 后面T行,每行一对整数n,m,见题目描述 m<=n 输出格式: 共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值 输入输出样例 i…
算法训练 Torry的困惑(基本型) 时间限制:1.0s   内存限制:512.0MB      问题描述 Torry从小喜爱数学.一天,老师告诉他,像2.3.5.7……这样的数叫做质数.Torry突然想到一个问题,前10.100.1000.10000……个质数的乘积是多少呢?他把这个问题告诉老师.老师愣住了,一时回答不出来.于是Torry求助于会编程的你,请你算出前n个质数的乘积.不过,考虑到你才接触编程不久,Torry只要你算出这个数模上50000的值. 输入格式 仅包含一个正整数n,其中n…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4548 Problem Description 小明对数的研究比较热爱,一谈到数,脑子里就涌现出好多数的问题,今天,小明想考考你对素数的认识. 问题是这样的:一个十进制数,如果是素数,而且它的各位数字和也是素数,则称之为“美素数”,如29,本身是素数,而且2+9 = 11也是素数,所以它是美素数. 给定一个区间,你能计算出这个区间内有多少个美素数吗?   Input 第一行输入一个正整数T,表示总共有T组…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2186 [题意] 若干个询问,求1..n!中与m!互质的个数. [思路] 首先有gcd(a,b)=gcd(a+b,b),则一个与m!互素的数+m!依旧与m!互素,每m!个看作一组,则1..m!中有phi(m!)*(n!/m!)的数与m!互素.即求: n!(1-1/p1)(1-1/p2)(1-1/p3)… mod R =n!(1-p1)(1-p2)(1-p3)…/(p1*p2*p3…)…
输出:一个集合S,表示1~n以内所有的素数 import java.util.Scanner; public class 筛法求素数 { public static void main(String[] args) { int n; Scanner sc = new Scanner(System.in); n = sc.nextInt(); int[] arr = new int[n]; for (int i = 2; i < n; i++) { arr[i] = i; } for (int i…
一般的线性筛法 genPrime和genPrime2是筛法求素数的两种实现,一个思路,表示方法不同而已. #include<iostream> #include<math.h> #include<stdlib.h> using namespace std; ; //素数表范围 ]; //标志一个数是否为素数 ]; //素数表,下标从0开始 ; //素数个数 void genPrime(int max) { memset(flag, true, sizeof(flag))…
OJ题目:click here~~ 题目分析:输出第k个素数 贴这么简单的题目,目的不清纯 用筛法求素数的基本思想是:把从1開始的.某一范围内的正整数从小到大顺序排列, 1不是素数,首先把它筛掉.剩下的数中选择最小的数是素数,然后去掉它的倍数. 依次类推.直到筛子为空时结束. 如有: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1不是素数.去掉.剩下的数中2最小,是素数,去掉2的…