P2272 [ZJOI2007]最大半连通子图 题目描述 一个有向图\(G=(V,E)\)称为半连通的\((Semi-Connected)\),如果满足:\(\forall u,v \in V\),满足\(u \to v\)或\(v \to u\),即对于图中任意两点\(u\),\(v,\)存在一条\(u\)到\(v\)的有向路径或者从\(v\)到\(u\)的有向路径.若\(G'=(V',E')\)满足\(V' \in V\),\(E'\)是\(E\)中所有跟\(V'\)有关的边,则称\(G'\…
P2272 [ZJOI2007]最大半连通子图 题意 题目描述 一个有向图\(G=(V,E)\)称为半连通的\((Semi-Connected)\),如果满足:\(\forall u,v\in V\),满足\(u\rightarrow v\)或\(v\rightarrow u\),即对于图中任意两点\(u,v\),存在一条\(u\)到\(v\)的有向路径或者从\(v\)到\(u\)的有向路径.若\(G^\prime=(V^\prime,E^\prime)\)满足\(V^\prime\in V\)…
题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大…
思路:$tarjan+DP$ 提交:1次 题解:首先对于一个强连通分量一定是一个半连通分量,并且形成的半连通分量的大小一定是它的$size$,所以我们先缩点. 这样,我们相当于要在新的$DAG$上找一个最长链(一旦有分叉边就不可能是一个半连通分量). 于是乎写了个$dfs$,$sz[u]$表示这个(缩完后的)点的包含点的数量,$mx[u]$表示以$u$为起点最长链的长度,$tot[u]$表示方案数. 但是注意这个图有可能不连通. #include<cstdio> #include<ios…
思路 tarjan的题目 注意是要选出一个点集而不是边集 第一问就是缩点之后最长链,第二问就是有多少个最长链,注意缩点后连边要去重(不然一个链的方案可能会被统计多次) 代码 #include <cstdio> #include <algorithm> #include <cstring> #include <stack> #include <set> using namespace std; int scc_cnt,sccno[100100],s…
P2272 [ZJOI2007]最大半连通子图 萌新初学Tarjan,在<信息学奥赛一本通-提高篇>中看到这题,看到题解不多,便想发布一篇较为清新简洁的题解.--第5道紫题 题目大意: 定义最大半连通图:对于图中任意两点u,v,存在一条u到v的有向路径 或者 从v到u的有向路径.求一个图中不同的最大半连通子图的数目. 看到题面时大家很容易想到,如果两点互相可以到达,那么它们必是半连通图,所以考虑先Tarjan缩点(P3387 [模板]缩点(Tarjan缩点+DAGdp)) 接着去除重边重新建图…
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1986  Solved: 802[Submit][Status][Discuss] Description Input 第一行包含两个整数N,M,X.N,M分别表示图G的点数与边数,X的意义如上文所述.接下来M行,每行两个正整数a, b,表示一条有向边(a, b).图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次. Outpu…
题目大意 题目是图片形式的,就简要说下题意算了 一个有向图 G=(V, E) 称为半连通的(Semi-Connected),如果满足图中任意两点 u v,存在一条从 u 到 v 的路径或者从 v 到 u 的路径 给一个有向图(n 个点,m 条边),求出她的最大半连通子图中所包含的点数,以及这样的最大半连通子图有多少个(要求模上一个给定的数 x) 对于20%的数据, N ≤18: 对于60%的数据, N ≤10000: 对于100%的数据, N ≤100000, M ≤1000000: 对于100…
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2286  Solved: 897[Submit][Status][Discuss] Description Input 第一行包含两个整数N,M,X.N,M分别表示图G的点数与边数,X的意义如上文所述.接下来M行,每行两个正整数a, b,表示一条有向边(a, b).图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次. Outpu…
WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就是记忆化搜一下...重边就用set判一下 ------------------------------------------------------------------------------------------- #include<cstdio> #include<cstring…
[ZJOI2007]最大半连通子图 题目大意: 一个有向图称为半连通的,当且仅当对于任意两点\(u,v\),都满足\(u\)能到达\(v\)或者\(v\)能到达\(u\). 给定一个\(n(n\le10^5)\)个点,\(m(m\le10^6)\)条边的有向图, 问该图最大半连通子图的节点个数及方案数. 思路: 缩点后在DAG上DP求带点权最长链,并统计方案数即可. 源代码: #include<stack> #include<queue> #include<cstdio>…
[ZJOI2007]最大半连通子图 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连…
题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'是V的自己,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不…
题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G’=(V’,E’)满足V’?V,E’是E中所有跟V’有关的边, 则称G’是G的一个导出子图.若G’是G的导出子图,且G’半连通,则称G’为G的半连通子图.若G’是G所有半连通子图 中包含节点数最多的,则称G’是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K ,以及不同的…
传送门 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不…
*题目描述: 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G’=(V’,E’)满足V’?V,E’是E中所有跟V’有关的边, 则称G’是G的一个导出子图.若G’是G的导出子图,且G’半连通,则称G’为G的半连通子图.若G’是G所有半连通子图 中包含节点数最多的,则称G’是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K ,以…
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,…
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边, 则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图 中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点…
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,…
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大半连通子图…
题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大半连…
思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给…
发现所谓半连通子图就是缩点后的一条链之后就是个模板题了.注意缩点后的重边.写了1h+真是没什么救了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<vector> using namespace std; int read() { ,f=…
题目链接 Solution 大概是个裸题. 可以考虑到,如果原图是一个有向无环图,那么其最大半联通子图就是最长的一条路. 于是直接 \(Tarjan\) 缩完点之后跑拓扑序 DP就好了. 同时由于是拓扑序DP,要去掉所有的重边. Code #include<bits/stdc++.h> #define ll long long using namespace std; const int maxn=100008; struct sj{int to,next;}a[maxn*10]; ll mo…
BZOJ原题链接 洛谷原题链接 和 Going from u to v or from v to u?(题解)这道题类似,只不过是求最大子图的大小和个数而已. 一样用\(tarjan\)求强连通分量,并进行缩点,然后对于缩点后的\(DAG\)进行拓扑排序\(DP\). 定义\(size[i]\)表示缩点后的图中每个点(即强连通分量)包含原有的点数,\(f[i]\)表示最大子图(缩点后实际上是一条链)的大小,\(g[i]\)表示大小为\(f[i]\)的终点为\(i\)的子图个数. 设当前边为\((…
Description Input 第一行包含两个整数N,M,X.N,M分别表示图G的点数与边数,X的意义如上文所述.接下来M行,每行两个正整数a, b,表示一条有向边(a, b).图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次. Output 应包含两行,第一行包含一个整数K.第二行包含整数C Mod X. Sample Input 6 6 20070603 1 2 2 1 1 3 2 4 5 6 6 4 Sample Output 3 3 HINT 对于100%的…
Description 定义一个半联通图为 : 对任意的两个点$u, v$,都有存在一条路径从$u$到$v$, 或从$v$到$u$. 给出一个有向图, 要求出节点最多的半联通子图,  并求出方案数. Solution 先进行一次$Tarjan \ SCC$ 缩点, 得到一个有向无环图, 则半联通子图一定是一条单向的链. 然后就相当于求出最大的链的节点数, 以及有多少种链有这么多节点. 从每个入度为$0$ 的节点开始$DP$即可. 还需要注意同一对联通块的边需要判重. Code #include<…
传送门 先将原图缩点,缩掉之后的点权就是连通块大小. 然后用拓扑排序统计最长链数就行了. 自己yyyyyy了一下一个好一点的统计方法. 把所有缩了之后的点都连向一个虚点. 然后再跑拓扑,这样最后虚点的答案就是要求的. 代码: #include<bits/stdc++.h> using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isd…
http://www.lydsy.com/JudgeOnline/problem.php?id=1093 两个条件综合起来加上求最大的节点数,那么很明显如果是环一定要缩点. 然后再仔细思考下就是求dag的最长路的数目啦... 然后wa了... 看了题解...噗!第一次注意到缩点后会有重边QAQ...于是.. orz orz 然后思考了下怎么处理重边...很简单,每个点bfs时记录一下就行了.. #include <cstdio> #include <cstring> #includ…
先tarjan缩成DAG,然后答案就变成了最长链,dp的同时计数即可 就是题面太唬人了,没反应过来 #include<iostream> #include<cstdio> #include<vector> #include<cstring> #include<queue> using namespace std; const int N=100005; int n,m,mod,h[N],cnt,dfn[N],low[N],tot,bl[N],co…