np问题(大数阶乘取模)】的更多相关文章

转自 np问题 题目描述: LYK 喜欢研究一些比较困难的问题,比如 np 问题. 这次它又遇到一个棘手的 np 问题.问题是这个样子的:有两个数 n 和 p,求 n 的阶乘对 p 取模后的结果. LYK 觉得所有 np 问题都是没有多项式复杂度的算法的,所以它打算求助即将要参加 noip的你,帮帮 LYK 吧! 输入格式(np.in): 输入一行两个整数 n,p. 输出格式(np.out): 输出一行一个整数表示答案. 输入样例: 3 4 输出样例: 2 数据范围: 对于 20%的数据: n,…
题目链接: Segment Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) Problem Description       Silen August does not like to talk with others.She like to find some interesting problems. Today she finds an interesting pro…
Description Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,B,C<2^63). Input There are multiply testcases. Each testcase, there is one line contains three integers A, B and C, separated by a single space. Output For each tes…
题面 输入只有5位,所以转化为long long类型用快速幂取模 前面补0的写法printf("%05lld\n",ans);如果ans不足5位会在前面补0 #include<bits/stdc++.h> using namespace std; long long mod_exp(long long a, long long b, long long c) //快速幂取余a^b%c { long long res, t; res = % c; t = a % c; whi…
题目链接:Uva 11582 [vjudge] watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt=""> 题意 输入两个非负整数a.b和正整数n(0<=a,b<=2^64,1<=n<=1000),让你计算f(a^b)对n取模的值,当中f(0) = 0,f…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4704 题意:求a^n%m的结果,其中n为大数. S(1)+S(2)+...+S(N)等于2^(n-1),第一次多校都出过吧.然后就是一个裸的大数幂了.. 关于大数的A^B mod C推荐看AC神的两篇文章<如何计算A^B mod C>,<计算a^(n!) mod c>... 当然,这个还以一个更简单的方法,由费马小定理:a^(p-1)=1(mod p),那么a^n=1(mod p)可以…
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int a[4]={2,3,4679,35617}; int p[36000],b[4],n,g,ans,i,j,x,y,mod=999911658; int power(int a,int b){//快速幂 int c=1; for(;b;b>>=1){ if(b&1) c=(ll)c*a%mod; a=(ll)a*a%mod;…
当几个数连续乘最后取模时,可以将每个数字先取模,最后再取模,即%对于*具有结合律.但是如果当用来取模的数本身就很大,采取上述方法就不行了.这个时候可以借鉴快速幂取模的方法,来达到大数相乘取模的效果. LL mul(LL a,LL b) { LL ans=0; while(b) { if(b&1) ans=(ans+a)%p; a=(a+a)%p; b=b>>1; } return ans; } LL Pow(LL a,LL b) { LL result=1; LL base=a%p;…
快速求排列组合C(m,n)%mod 写在前面: 1. 为防止产生n和m的歧义,本博文一律默认n >= m 2. 本博文默认mod = 10^6+3 3. 本博文假设读者已知排列组合公式 C(m,n)=n!(n−m)!∗m! 4. 普通的小数据就不用多说了,直接用公式,当然别忘了取模 C(m,n)=C(m−1,n−1)+C(m,n−1) 现在我们讨论当n可达10^9数量级大小时的算法. 步骤一:我们先把分子阶乘写成以下形式 n!=X∗modY 步骤二:对分母元素乘机求逆元.此时我们假设得到了以下方…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4704 题目大意: 看似复杂,其实就是求整数n的划分数,4=1+1+2和4=1+2+1是不同的.因而可知答案是2n-1. 题目分析: 因为n实在是太大太大了,这可咋办啊?!n<10100000. 做这场的时候没有注意到,也是当时没有看过什么是费马小定理,居然跟模值有关系!mod=1000000007.这个mod有什么特点呢?它是个质数. 费马小定理揭示了:当p是一个素数并且a和p互质时,ap-1 %…