Tensorflow常用函数说明】的更多相关文章

tensorflow常用函数 TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测.如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作. 并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进.大部分核相关的操作都是设备相关的实现,比如GPU.下面是一些重要的操作/核: 操作组 操…
本文介绍了tensorflow的常用函数,源自网上整理. TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测.如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作.并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进.大部分核相关的操作都是设备相关的实现,比如GPU. 下面是一些…
摘要:本文主要对tf的一些常用概念与方法进行描述. tf函数 TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测.如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作. 并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进.大部分核相关的操作都是设备相关的实现,比如GPU.下面是…
[1]卷积层(Convolutional Layer),构建一个2维卷积层,常用的参数有 conv = tf.layers.conv2d( inputs=pool, filters=64, kernel_size=[5, 5], padding="same", activation=tf.nn.relu) inputs表示输入要的Tensor,filters表示卷积核的数量,kernel_size表示卷积核的大小,padding表示卷积的边界处理方式, 有valid和same两种方式,…
首先最开始应该清楚一个知识,最外面的那个[ [ [ ]]]括号代表第一维,对应维度数字0,第二个对应1,多维时最后一个对应数字-1:因为后面有用到 1 矩阵变换 tf.shape(Tensor) 返回张量的形状.但是注意,tf.shape函数本身也是返回一个张量.而在tf中,张量是需要用sess.run(Tensor)来得到具体的值的. x=[[1,2,3],[4,5,6]] shape=tf.shape(x) with tf.Session() as sess: print (shape) p…
一.tf.transpose函数的用法 tf.transpose(input, [dimension_1, dimenaion_2,..,dimension_n]):这个函数主要适用于交换输入张量的不同维度用的,如果输入张量是二维,就相当是转置.dimension_n是整数,如果张量是三维,就是用0,1,2来表示.这个列表里的每个数对应相应的维度.如果是[2,1,0],就把输入张量的第三维度和第一维度交换. import numpy as np import tensorflow as tf A…
1.矩阵操作 1.1矩阵生成 这部分主要将如何生成矩阵,包括全0矩阵,全1矩阵,随机数矩阵,常数矩阵等 sess=tf.InteractiveSession() #x=tf.ones([2,3],tf.int32) x=tf.zeros([2,3],tf.int32) print (sess.run(x)) 新建一个与给定的tensor类型大小一致的tensor,使其所有元素为0和1 sess=tf.InteractiveSession() tensor=[[1,2,3],[4,5,6]] #x…
从二维数组中选一个矩形 import tensorflow as tf data = [[1,2,3,4,5,6,7,8],[11,12,13,14,15,16,17,18]] x = tf.strided_slice(data,[0,0],[2,4]) with tf.Session() as sess: print(sess.run(x)) numpy array转tensor import tensorflow as tf import numpy as np A = list([1, 2…
一.变量相关的函数 1)tf.train.list_variables(ckpt_dir_or_file)    Returns list of all variables in the checkpoint 2)tf.global_variables_initializer()   用于初始化所有的变量(GraphKeys.VARIABLES),替代 tf.initialize_all_variables(). 3)tf.Variable(initial_value=None, trainab…
归一化函数: def norm_boxes(boxes, shape): """Converts boxes from pixel coordinates to normalized coordinates. boxes: [N, (y1, x1, y2, x2)] in pixel coordinates shape: [..., (height, width)] in pixels Note: In pixel coordinates (y2, x2) is outsid…