狄利克雷卷积&莫比乌斯反演证明】的更多相关文章

狄利克雷卷积简介 卷积这名字听起来挺学究的,今天学了之后发现其实挺朴实hhh. 卷积: "(n)"表示到n的一个范围. 设\(f,g\)是两个数论函数(也就是说,以自然数集为定义域的复数值函数),则卷积运算\(f\ast g\)定义为 \[(f\ast g)(n) = \sum_{ij=n}{f(i)g(j)}\] 另一种写法就是: \[(f\ast g)(n) = \sum_{d\mid n}{f(d)g(\frac{n}{d})}\] 这里给一段数论函数的定义: 数论函数亦称算术函…
狄利克雷卷积&莫比乌斯反演总结 Prepare 1.\([P]\)表示当\(P\)为真时\([P]\)为\(1\),否则为\(0\). 2.\(a|b\)指\(b\)被\(a\)整除. 3.一些奇怪常见的函数: \(1(n)=1\) \(id(n)=n\) \(\sigma(n)=n的约数和\) \(d(n)=n的约数个数\) \(\epsilon(n)=[n==1]\) 狄利克雷卷积 数论函数 数论函数指一类定义域是正整数,值域是一个数集的函数. 加法:逐项相加就可以辣\((f+g)(x)=f…
昨天刚说完不搞数论了,刚看到一个\(gcd\)的题目dalao用这个做了,虽然比正解麻烦,还是打算学一学了 数论函数: 数论函数的定义: 数论函数亦称算术函数,一类重要的函数,指定义在正整数集上的实值或复值函数,更一般地,也可把数论函数看做是某一整数集上定义的函数 常见积性函数 \(\mu(n)\) \(~~~~~~~~n=1:\mu(n)=1\),\(n=\prod\limits_{i=1}^k p_i:\mu(n)=(-1)^k\),\(d\)有任何质因子幂次大于等于\(2:\mu(n)=0…
积性函数与完全积性函数 积性函数 若一个数论函数\(f\)满足当\(gcd(n,m)=1\)时,\(f(nm)=f(n)f(m)\) 则称\(f\)为积性函数 一些常见的积性函数 完全积性函数 若一个积性函数函数\(f\)满足当\(gcd(n,m)\ne1\)时,也有\(f(nm)=f(n)f(m)\) 则称\(f\)为完全积性函数 狄利克雷卷积 定义两个数论函数的狄利克雷卷积\(*\) 若\(t=f*g\) \[t(n)=\sum\limits_{i|n}f(i)g(\frac{n}{i})…
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_{n|d}\mu(\frac{d}{n})g(d)\end{aligned}\] 实际上还有 \[\begin{aligned}g(n)&=\sum_{d|n}f(d)\\f(n)&=\sum_{d|n}\mu(\frac{n}{d})g(d)\end{aligned}\] 证明可以看看这里,…
ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: https://ssplaysecond.blogspot.jp/2017/04/blog-post_8.html 莫比乌斯反演 https://ssplaysecond.blogspot.jp/2017/04/blog-post_91.html 狄利克雷卷积与杜教筛 https://ssplayse…
[BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[gcd(i,j)=k]\) \(T,a,b,c,d,k\le 5\times 10^4\) 分析 \(O(n^2)\)暴力显然是不可行的,我们考虑优化. 首先易得\(k\times gcd(i,j)=gcd(ki,kj)\),那么我们可以把a,b,c,d都除上k,问题就变成了\(\sum _{i=a…
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3601 题解 首先还是基本的推式子: \[\begin{aligned}f_d(n) &= \sum_{i = 1}^n [{\rm gcd}(i, n) = 1]i^d \\ &= \sum_{i = 1}^n i^d \sum_{k | i, k | n}\mu(k) \\ &= \sum_{k | n} \mu(k) \sum_{k | i} i^d \\ &…
我也不知道什么是"莫比乌斯反演"和"杜教筛" Part0 最近一直在搞这些东西 做了将近超过20道题目吧 也算是有感而发 写点东西记录一下自己的感受 如果您真的想学会莫比乌斯反演和杜教筛,请拿出纸笔,每个式子都自己好好的推一遍,理解清楚每一步是怎么来的,并且自己好好思考. Part1莫比乌斯反演 莫比乌斯反演啥都没有,就只有两个式子(一般只用一个) 原来我已经写过一次了,再在这里写一次 就只写常用的那个吧 基本的公式 对于一个函数\(f(x)\) 设\(g(x)=\…
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000,1\leq k\leq n,m\leq 50000$ 暴力做法 $O(Tnm\log\max(n,m))$ 不用说了,那有没有什么更好的做法呢? 我们定义一种函数叫莫比乌斯函数 $\mu$,它的定义是: 当 $n=1$ 时,$\mu(n)=1$ 当 $n$ 可以分解成 $p_1p_2...p_k$…