深入理解Python中的生成器】的更多相关文章

生成器(generator)概念 生成器不会把结果保存在一个系列中,而是保存生成器的状态,在每次进行迭代时返回一个值,直到遇到StopIteration异常结束. 生成器语法 生成器表达式: 通列表解析语法,只不过把列表解析的[]换成()生成器表达式能做的事情列表解析基本都能处理,只不过在需要处理的序列比较大时,列表解析比较费内存. >>> gen = (x**2 for x in range(5)) >>> gen <generator object <g…
send方法和next方法唯一的区别是在执行send方法会首先把上一次挂起的yield语句的返回值通过参数设定,从而实现与生成器方法的交互. 但是需要注意,在一个生成器对象没有执行next方法之前,由于没有yield语句被挂起,所以执行send方法会报错. 因为当send方法的参数为None时,它与next方法完全等价.但是注意,虽然这样的代码可以接受,但是不规范.所以,在调用send方法之前,还是先调用一次next方法为好. python特性(八):生成器对象的send方法 - CSDN博客…
怎么理解Python迭代器与生成器?在Python中,使用for ... in ... 可以对list.tuple.set和dict数据类型进行迭代,可以把所有数据都过滤出来.如下:         for element in [1, 2, 3]: print(element) for element in (1, 2, 3): print(element) for key in {'one':1, 'two':2}: print(key) for char in "123": pr…
你真的理解Python中MRO算法吗? MRO(Method Resolution Order):方法解析顺序. Python语言包含了很多优秀的特性,其中多重继承就是其中之一,但是多重继承会引发很多问题,比如二义性,Python中一切皆引用,这使得他不会像C++一样使用虚基类处理基类对象重复的问题,但是如果父类存在同名函数的时候还是会产生二义性,Python中处理这种问题的方法就是MRO. [历史中的MRO] 如果不想了解历史,只想知道现在的MRO可以直接看最后的C3算法,不过C3所解决的问题…
默认参数:  Python是支持可变参数的,最简单的方法莫过于使用默认参数,例如: def getSum(x,y=5): print "x:", x print "y:", y print "x+y :", x + y getSum(1) # result: # x: 1 # y: 5 # x+y : 6 getSum(1,7) # result: # x: 1 # y: 7 # x+y : 8 可变参数: 另外一种达到可变参数 (Variabl…
使用元类 深刻理解Python中的元类(metaclass)以及元类实现单例模式 在看一些框架源代码的过程中碰到很多元类的实例,看起来很吃力很晦涩:在看python cookbook中关于元类创建单例模式的那一节有些疑惑.因此花了几天时间研究下元类这个概念.通过学习元类,我对python的面向对象有了更加深入的了解.这里将一篇写的非常好的文章基本照搬过来吧,这是一篇在Stack overflow上很热的帖子,我看http://blog.jobbole.com/21351/这篇博客对其进行了翻译.…
以下内容基于python3.4 1. python中的普通函数是怎么运行的? 当一个python函数在执行时,它会在相应的python栈帧上运行,栈帧表示程序运行时函数调用栈中的某一帧.想要获得某个函数相关的栈帧,则必须在调用这个函数且这个函数尚未返回时获取,可能通过inspect模块的currentframe()函数获取当前栈帧. 栈帧对象中的3个常用的属性: f_back : 调用栈的上一级栈帧 f_code: 栈帧对应的c f_locals: 用在当前栈帧时的局部变量; 比如: >>&g…
先回顾列表解释 lista = range(10) listb = [elem * elem for elem in lista] 那么listb就将会是0至9的二次方. 现在有这么一个需求,需要存储前10个斐波那契数到硬盘. 那么先写产生斐波那契数的函数: def fib(max): n,a,b = 0,0,1 while n < max: print(b) a,b = b,a + b n+=1 这样就会打印出前max个斐波那契数了.接着我们再修改一下.(因为我们需要的是存到硬盘里) fibl…
一. 剖析一下生成器对象 先看一个简单的例子,我们创建一个生成器函数,然后生成一个生成器对象 def gen(): print('start ..') for i in range(3): yield i print('end...') G=gen() print(type(G)) >> <type 'generator'> 表示G是一个生成器对象,我们来剖析一下,里面到底有什么 print(dir(G)) >>['__class__', '__delattr__',…
一. 一个浅显易懂的比喻 我们在学习python编程时,不可避免的会遇到if __name__=='main'这样的语句,它到底有什么作用呢? <如何简单地理解Python中的if __name__ == '__main__'>里举了一个通俗易懂的例子: ''' 通俗的理解__name__ == '__main__':假如你叫小明.py,在朋友眼中,你是小明(__name__ == '小明'):在你自己眼中,你是你自己(__name__ == '__main__'). if __name__…