DAG模型——硬币问题】的更多相关文章

硬币问题 有n种硬币,面值分别为V1,V2,...,Vn,每种都有无限多.给定非负整数S,可以选用多少个硬币,使得面值之和恰好为S?输出硬币数目的最小值和最大值.1<=n<=100, 0<=S<=10000,1<=Vi<=S. 分析: 我们把每种面值看做一个点,表示“还需要凑足的面值”,则初始状态为S,目标状态为0.若当前在状态 i ,每使用一个硬币j ,状态便转移到 i-Vj . 注意到最长路和最短路的求法是类似的,下面只考虑最长路.由于终点固定,d(i)的确切含义变…
1.UVA103 嵌套n维空间 DAG模型记忆化搜索,或者 最长上升子序列. 2.dp[i]=max( dp[j]+1),(第i个小于第j个) (1) //DAG模型记忆化搜索 #include<bits/stdc++.h> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define F(i,a,b) for (int i=a;i<b;i++) #define F…
矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中.你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内.   输入 第一行是一个正正数N(0<N<10),表示测试数据组数…
数字三角形: 1.递归计算 int solve(int i,int j) { :max(solve(i+,j),solve(i+,j+))); } 2.记忆化搜索,不用指明计算顺序,并且保证每个状态只计算一次 int solve(int i,int j) { ) return d[i][j]; :max(solve(i+,j),solve(i+,j+))); } 3.递推计算 ;j<=n;j++) d[n][j] = a[n][j]; ;i>=;i--) { ;j<=i;j++) { d…
有向无环图上的动态规划是学习动态规划的基础,很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 嵌套矩阵 有n个矩阵,每个矩阵可以用两个整数a,b描述,表示它的长和宽.矩阵X(a,b)可以嵌套在矩阵Y(c,d)中当且仅当a<c,b<d,或者b<c,a<d(相当于把矩阵X旋转90.)例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)内.你的任务是选出尽量多的矩阵排成一行,使得除了最后一个只之外,每一个矩形都可以嵌套在下一个矩形内. 分析: 矩阵之间的“可嵌套”关系…
题目:有n种硬币,面值分别为V1,V2,...Vn,每种都有无限多.给定非负整数S,可以选用多少个硬币,使得面值之和恰好为S?输出硬币数目的最小值和最大值! #include <bits/stdc++.h> using namespace std; int n, m, t; const int INF = 0x3f3f3f3f; int a[1005],Max[1005],Min[1005]; void dfs(int *d, int s) { for(int i=1; i<=n; i+…
题目:UVA 103 stacking boxes 题目大意: 给你两个数,一个是盒子的个数,一个是每一个盒子的维数.将一个个盒子互相装起来,让你求最多可以装多少个,要求字典序最小. 解析:这个就是盒子的嵌套,和二维盒子嵌套有点像,只是建图的方法不一样,二维只要判断两个,长和宽即可,而k维需要判断k次,除此之外,其余都是一样的. 方法: 前提:dp[i]=max(dp[i],d(j)+1); 第一步,就是建图,map[][],判断出哪些可以嵌套 第二步:再用一个函数来计算路径长度 #includ…
推荐在线例题:http://acm.nyist.net/JudgeOnline/problem.php?pid=16 题摘: 矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中.你的任务是选出尽可能多的矩形排成一行,使得除…
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽.矩形X(a , b)可以嵌套在矩形Y(c , d)中当且仅当a<c,b<d,或者b<c,a<d(相当于把矩形X旋转90°).例如(1,5)可以嵌套在(6, 2)内,但不能嵌套在(3, 4)内.你的任务是选出尽可能多的矩形排…
DAG上的动态规划: 有向无环图上的动态规划是学习DP的基础,很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 1.没有明确固定起点重点的DAG模型: 嵌套矩形问题:有n个矩形,每个矩形可以用两个整数a.b表示它的长和宽,矩形可以嵌套在矩形中当且仅当a<c,b<d或者b<c,a<d.选出尽量多的矩形排成一行,使得除了最后一个之外,每个矩形都可以嵌套在下一个矩形内.如果有多解矩形编号字典序应尽量小. /** * 嵌套矩形问题:有n个矩形,每个矩形可以用两个整数a.b表示它…