Rightmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 55522    Accepted Submission(s): 20987 Problem Description Given a positive integer N, you should output the most right digit of N…
从左上角到右下角,共经过n+m个节点,从其中选择n各节点向右(或者m各节点向下),所以答案就是C(n+m,n)或者C(n+m,m),组合数暴力算即可,但是要取模,所以用了乘法逆元. #include<iostream> #include<cstdio> using namespace std; typedef long long ll; #define CONST_MOD 1000000007 ll n,m; ll pow_mod(ll a,ll p,ll MOD) { ; ll…
Description has only two SentencesTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 852 Accepted Submission(s): 259 Problem Descriptionan = X*an-1 + Y and Y mod (X-1) = 0.Your task is to calculate th…
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围,即使是long long也无法存储. 因此需要利用 (a*b)%c = (a%c)*(b%c)%c,一直乘下去,即 (a^n)%c = ((a%c)^n)%c; 即每次都对结果取模一次 此外,此题直接使用朴素的O(n)算法会超时,因此需要优化时间复杂度: 一是利用分治法的思想,先算出t = a^(n/2),若…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1097 分析:简单题,快速幂取模, 由于只要求输出最后一位,所以开始就可以直接mod10. /*A hard puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 33036 Accepted Submission(s): 11821 Pr…
1615: 刘备闯三国之三顾茅庐(三) Time Limit: 1000 MS  Memory Limit: 128 MBSubmit: 45  Solved: 8[Submit][Status][Web Board] Description 刘备(161年-223年6月10日),字玄德,东汉末年幽州涿郡涿县,西汉中山靖王刘胜的后代.刘备一生极具传奇色彩,早年颠沛流离.备尝艰辛最终却凭借自己的谋略终成一方霸主.那么在那个风云激荡的年代,刘备又是如何从一个卖草鞋的小人物一步一步成为蜀汉的开国皇帝呢…
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N integers a 1, a 2, -, a N, and M, K. She says each integers 1 ≤ a i ≤ M. And now Alice wants to ask for each d = 1 to M, how many different sequences b…
n=1  --> ans = 2 = 1*2 = 2^0(2^0+1) n=2  -->  ans = 6 = 2*3 = 2^1(2^1+1) n=3  -->  ans = 20 = 4*5 = 2^2(2^2+1) n=4  -->  ans = 72 = 8*9 = 2^3(2^3+1) n=k  -->  ??? = 2^k-1*(2^k-1+1) 于是题目转化为快速幂求模问题..... #include<bits/stdc++.h> using nam…
Problem Description Given a positive integer N, you should output the most right digit of N^N. Input The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.Each…
快速幂取模算法的引入是从大数的小数取模的朴素算法的局限性所提出的,在朴素的方法中我们计算一个数比如5^1003%31是非常消耗我们的计算资源的,在整个计算过程中最麻烦的就是我们的5^1003这个过程 缺点1:在我们在之后计算指数的过程中,计算的数字不都拿得增大,非常的占用我们的计算资源(主要是时间,还有空间) 缺点2:我们计算的中间过程数字大的恐怖,我们现有的计算机是没有办法记录这么长的数据的,所以说我们必须要想一个更加高效的方法来解决这个问题 当我们计算AB%C的时候,最便捷的方法就是调用Ma…
A sequence of numbers                                                             Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)                                                                                    …
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2817 解题思路:arithmetic or geometric sequences 是等差数列和等比数列的意思, 即令输入的第一个数为a(1),那么对于等差数列 a(k)=a(1)+(k-1)*d,即只需要求出 a(k)%mod   又因为考虑到k和a的范围, 所以对上式通过同余作一个变形:即求出 (a(1)%mod+(k-1)%mod*(d%mod))%mod 对于等比数列 a(k)=a(1)*q…
(转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余).在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快.计算范围更大的算法,产生了快速幂取模算法.我们先从简单的例子入手:求abmodc 算法1.直接设计这个算法: ; ;i<=b;i++) { ans = ans…
题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) % n,则所求为F(ab) 如果新数列中相邻两项重复出现的话,则根据递推关系这个数列是循环的. 相邻两项所有可能组合最多就n2中,所以根据抽屉原理得到这个数列一定是循环的. 求出数列的周期,然后快速幂取模即可. #include <cstdio> #include <iostream>…
题目大意 判断一个数是否是伪素数 题解 赤果果的快速幂取模.... 代码: #include<iostream> #include<cmath> using namespace std; #define LL long long LL mul_mod(LL a,LL b,int n) { return a*b%n; } LL pow_mod(LL a,LL p,LL n) { ) ; LL ans=pow_mod(a,p/,n); ans=ans*ans%n; ==) ans=an…
题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k).N'为N的k进制表示的各位数字之和.输入x,y,k,输出root(x^y,k)的值 (这里^为乘方,不是异或),2=<k<=16,0<x,y<2000000000,有一半的测试点里 x^y 会溢出int的范围(>=2000000000) 输入: 每组测试数据包括一行,x(0<…
小明系列故事——师兄帮帮忙 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Total Submission(s): 3502    Accepted Submission(s): 894 Problem Description 小明自从告别了ACM/ICPC之后,就开始潜心研究数学问题了,一则可以为接下来的考研做准备,再者可以借此机会帮助一些同学,尤其是漂亮的师妹.这不,班里…
很久以前做过此类问题..就因为太久了..这题想了很久想不出..卡在推出等比的求和公式,有除法运算,无法快速幂取模... 看到了 http://blog.csdn.net/yangshuolll/article/details/9247759 才想起等比数列的快速幂取模.... 求等比为k的等比数列之和T[n]..当n为偶数..T[n] = T[n/2] + pow(k,n/2) * T[n/2] n为奇数...T[n] = T[n/2] + pow(k,n/2) * T[n/2] + 等比数列第…
Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 Output 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 Sample Input 2 1 1 1 1 1 Sample Output 1 1 1 1 Http Luogu:https://www.luogu.org/prob…
1.HDU1013求一个positive integer的digital root,即不停的求数位和,直到数位和为一位数即为数根. 一开始,以为integer嘛,指整型就行吧= =(too young),后来大数自然用字符串解决,然后get到一个新数论点九余数定理: https://en.wikipedia.org/wiki/Digital_root 即:一个数的数根等于它模 9 的余数.(=>几个数之积的九余数=每个数的九余数之积的九余数.) 2.HDU1163,2035求n^n的数根,即九余…
快速幂取模算法详解 1.大数模幂运算的缺陷: 快速幂取模算法的引入是从大数的小数取模的朴素算法的局限性所提出的,在朴素的方法中我们计算一个数比如5^1003%31是非常消耗我们的计算资源的,在整个计算过程中最麻烦的就是我们的5^1003这个过程 缺点1:在我们在之后计算指数的过程中,计算的数字不都拿得增大,非常的占用我们的计算资源(主要是时间,还有空间) 缺点2:我们计算的中间过程数字大的恐怖,我们现有的计算机是没有办法记录这么长的数据的,所以说我们必须要想一个更加高效的方法来解决这个问题 2.…
题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Persona5 is a famous video game. In the game, you are going to build relationship with your friends. You have N friends and each friends have his upper b…
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b /= ; } return ans; } 快速幂取模运算 公式: 最终版算法: int PowerMod(int a, int b, int c) { ; a = a % c; ) { = = )ans = (ans * a) % c; b = b/; a = (a * a) % c; } retur…
http://poj.org/problem?id=1995 以这道题来分析一下快速幂取模 a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 利用公式a*b%c=((a%c)*b)%c 每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化 由此可以用快速幂算法优化: http://www.cnblogs.com/qlky/p/5020402.html 再结合取模公式: (a + b) % p = (a % p…
"红色病毒"问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 9329    Accepted Submission(s): 3816 Problem Description 医学界发现的新病毒因其蔓延速度和Internet上传播的"红色病毒"不相上下,被称为"红色病毒",经研究发现,…
当几个数连续乘最后取模时,可以将每个数字先取模,最后再取模,即%对于*具有结合律.但是如果当用来取模的数本身就很大,采取上述方法就不行了.这个时候可以借鉴快速幂取模的方法,来达到大数相乘取模的效果. LL mul(LL a,LL b) { LL ans=0; while(b) { if(b&1) ans=(ans+a)%p; a=(a+a)%p; b=b>>1; } return ans; } LL Pow(LL a,LL b) { LL result=1; LL base=a%p;…
看题传送门 题目大意: 有n个人,选一个或者多个人参加比赛,其中一名当队长,如果参赛者相同,队长不同,也算一种方案.求一共有多少种方案. 思路: 排列组合问题. 先选队长有C(n , 1)种 然后从n-1个人中选,但人数不确定,所以应是1个~n-1个人的和. 比如n=1,那么就是C(n , 1)种 n=2 那么就是 C(n , 1)  +  C(n ,1) * C(n-1 , 1) n=3那么就是 C(n , 1)  +  C(n ,1) * C(n-1 , 1)  +  C(n , 1) *…
快速幂取模 即快速求出(a^b)mod c 的值.由于当a.b的值非常大时直接求a^b可能造成溢出,并且效率低. 思路 原理就是基于\(a*b \% c = ((a \% c)*(b \% c))\% c\),\(a^b \% c = (a \% c)^b \% c\)公式. 求解快速幂: 设指数b用二进制表示为\(b = (b_n b_{n-1}...b_2b_1b_0)_2\), \(b = b_0 + b_1*2^1 + b_2*2^2+...+b_{n-1}*2^{n-1} + b_n*…
Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 20309   Accepted: 8524 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test cas…
https://codeforces.com/contest/1236/problem/B Alice got many presents these days. So she decided to pack them into boxes and send them to her friends. There are nn kinds of presents. Presents of one kind are identical (i.e. there is no way to disting…