局部线性嵌入(LLE)原理总结】的更多相关文章

局部线性嵌入(Locally Linear Embedding,以下简称LLE)也是非常重要的降维方法.和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征,它广泛的用于图像图像识别,高维数据可视化等领域.下面我们就对LLE的原理做一个总结. 1. 流形学习概述 LLE属于流形学习(Manifold Learning)的一种.因此我们首先看看什么是流形学习.流形学习是一大类基于流形的框架.数学意义上的流形比较抽象,不…
在局部线性嵌入(LLE)原理总结中,我们对流形学习中的局部线性嵌入(LLE)算法做了原理总结.这里我们就对scikit-learn中流形学习的一些算法做一个介绍,并着重对其中LLE算法的使用方法做一个实践上的总结. 1. scikit-learn流形学习库概述 在scikit-learn中,流形学习库在sklearn.manifold包中.里面实现的流形学习算法有: 1)多维尺度变换MDS算法:这个对应的类是MDS.MDS算法希望在降维时在高维里样本之间的欧式距离关系在低维可以得到保留.由于降维…
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,manifold def load_data(): ''' 加载用于降维的数据 ''' # 使用 scikit-learn 自带的 iris 数据集 iris=datasets.load_iris() return iris.data,iris.target #局部线性嵌入LLE降维模型 d…
非线性降维 流形学习 算法思想有些类似于NLM,但是是进行的降维操作. [转载自] 局部线性嵌入(LLE)原理总结 - yukgwy60648的博客 - CSDN博客 https://blog.csdn.net/yukgwy60648/article/details/54578141 LLE局部线性嵌入算法 - Eleven-Seven工作小空间 - CSDN博客 https://blog.csdn.net/xiaozhouchou/article/details/51866685…
机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近刷题看到特征降维相关试题,发现自己了解的真是太少啦,只知道最简单的降维方法,这里列出了常见的降维方法,有些算法并没有详细推导.特征降维方法包括:Lasso,PCA,小波分析,LDA,奇异值分解SVD,拉普拉斯特征映射,SparseAutoEncoder,局部线性嵌入LLE,等距映射Isomap. 1…
% SLLE ALGORITHM (using K nearest neighbors) % % [Y] = lle(X,K,dmax,a) % % X = data as D x N matrix (D = dimensionality, N = #points) % K = number of neighbors % dmax = max embedding dimensionality % Y = embedding as dmax x N matrix % a=增量因子 %%%%%%%%…
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结.LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解下它的算法原理. 在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),…
之前数篇博客我们比较了几种具有代表性的聚类算法,但现实工作中,最多的问题是分类与定性预测,即通过基于已标注类型的数据的各显著特征值,通过大量样本训练出的模型,来对新出现的样本进行分类,这也是机器学习中最多的问题,而本文便要介绍分类算法中比较古老的线性判别分析: 线性判别 最早提出合理的判别分析法者是R.A.Fisher(1936),Fisher提出将线性判别函数用于花卉分类上,将花卉的各种特征利用线性组合方法变成单变量值,即将高维数据利用线性判别函数进行线性变化投影到一条直线上,再利用单值比较方…
在上一节介绍了一种最常见的降维方法PCA,本节介绍另一种降维方法LLE,本来打算对于其他降维算法一并进行一个简介,不过既然看到这里了,就对这些算法做一个相对详细的学习吧. 0.流形学习简介 在前面PCA中说到,PCA是一种无法将数据进行拉直,当直接对于曲面进行降维后,导致数据的重叠,难以区分,如下图所示: 这是因为在使用PCA降维时,PCA仅仅关注于保持降维后的方差最大,没有考虑样本的局部特征,如图所示: 利用PCA在对点①进行降维后,没有考虑点①与其他点②.③.④..的位置关系,也就是说对于点…
机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达, y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的.使用降维的原因: 压缩数据以减少存储量. 去除噪声的影响 从数据中提取特征以便于进行分类 将数据投影到低维可视空间,以便于看清数据的分布 变量(特征)数量相对数据条数有可能过大,从而不符合某些模型的需求.打…