pytorch实现花朵数据集读取】的更多相关文章

import os from PIL import Image from torch.utils import data import numpy as np from torchvision import transforms as T class My_Data(data.Dataset): def __init__(self, root, transforms=None, train=True, test=False): ''' 目标:获取所有图片路径,并根据训练.验证.测试划分数据 ''…
Pytorch中数据集读取 在机器学习中,有很多形式的数据,我们就以最常用的几种来看: 在Pytorch中,他自带了很多数据集,比如MNIST.CIFAR10等,这些自带的数据集获得和读取十分简便: import torch import torch.nn as nn import torch.utils.data as Data import torchvision train_data = torchvision.datasets.MNIST( root='./mnist/', # 数据集存…
基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 TensorFlow 和 Keras 等框架的出现大大降低了编程的复杂度,而迁移学习的思想也允许我们利用现有的模型加上少量数据和训练时间,取得不俗的效果. 这篇文章将示范如何利用迁移学习训练一个能从图片中分类不同种类的花的模型,它在五种花中能达到 80% 以上的准确度(比瞎蒙高了 60% 哦),而且只需要普…
整理一下看到的自定义数据读取的方法,较好的有一下三篇文章, 其实自定义的方法就是把现有数据集的train和test分别用 含有图像路径与label的list返回就好了,所以需要根据数据集随机应变. 所有图片都在一个文件夹1 之前刚开始用的时候,写Dataloader遇到不少坑.网上有一些教程 分为all images in one folder 和 each class one folder.后面的那种写的人比较多,我写一下前面的这种,程式化的东西,每次不同的任务改几个参数就好. 等训练的时候写…
pytorch初学者,想加载自己的数据,了解了一下数据类型.维度等信息,方便以后加载其他数据. 1 torchvision.transforms实现数据预处理 transforms.Totensor()操作必须要有,将数据转为张量格式. 2 torch.utils.data.Dataset实现数据读取 要使用自己的数据集,需要构建Dataset子类,定义子类为MyDataset,在MyDataset的init函数中定义path_dict变量,来获取不同类型的数据的路径. 定义子类MyDatase…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.NLP等多个学术交流分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 1 PIL读取图片 2 TF读取图片 3 TF构建数据集 本文的代码已经上传公众号后台,回复[PyTorch]获取. 1 PIL读取图片 想要把一个图片,转换成RGB3通道的一个张量,我们怎么做呢?大家第一反应应该是PIL这个库吧 from PIL import Image impor…
参考:https://jingyan.baidu.com/article/656db9183296c7e381249cf4.html 1.使用读取方式pickle def unpickle(file):    import pickle    with open(file, 'rb') as fo:        dict = pickle.load(fo, encoding='bytes')    return dict 返回的是一个python字典 2.通过字典的内置函数,获取键值 >>&…
数据集加载和处理 这里主要涉及两个包:torchvision.datasets 和torch.utils.data.Dataset 和DataLoader torchvision.datasets是一些包装好的数据集 里边所有可用的dataset都是 torch.utils.data.Dataset 的子类,这些子类都要有 __getitem__ 和 __len__ 方法是实现. 这样, 定义的数据集才能够被 torch.utils.data.DataLoader ,DataLoader能够使用…
先来看一下我们的目录: dataset1 和creat_dataset.py 属于同一目录 mergeImg1 和mergeImg2 为Dataset1的两子目录(两类为例子)目录中存储图像等文件 核心文件creat_dataset.py 文件如下#来生成训练集和测试集的矩阵 import cv2 as cv import numpy as np import os dataset_path = ["mergeImg1","mergeImg2"] #这里为了增加限制…
在使用 torchvision.transforms进行数据处理时我们经常进行的操作是: transforms.Normalize((0.485,0.456,0.406), (0.229,0.224,0.225)) 前面的(0.485,0.456,0.406)表示均值,分别对应的是RGB三个通道:后面的(0.229,0.224,0.225)则表示的是标准差 这上面的均值和标准差的值是ImageNet数据集计算出来的,所以很多人都使用它们 但是如果你想要计算自己的数据集的均值和标准差,让其作为你的…
CIFAR-10.(Canadian Institute for Advanced Research)是由 Alex Krizhevsky.Vinod Nair 与 Geoffrey Hinton 收集的一个用于图像识别的数据集,60000个32*32的彩色图像,50000个training data,10000个 test data 有10类,飞机.汽车.鸟.猫.鹿.狗.青蛙.马.船.卡车,每类6000张图.与MNIST相比,色彩.颜色噪点较多,同一类物体大小不一.角度不同.颜色不同. 先要对…
(转载请注明作者和出处 楼燚(yì)航的blog :http://www.cnblogs.com/louyihang-loves-baiyan/ 未经允许请勿用于商业用途) 本文主要是针对上一篇基于DPM的VOC-release5的版本,matlab的版本进行训练. 训练自己的数据集主要是修改pascal_data这个文件,这个是负责读取参与训练的正负样本,以下是我的的读取文件,其中我的正样本的数据格式为 1.jpg 2 x1 y1 x2 y2 x2_1 y2_1 x2_2 y2_2 图片路径之…
from tensorflow.python import keras (x_train,y_train),(x_test,y_test) = keras.datasets.cifar100.load_data() print(x_train.shape) print(y_train.shape)…
1. Image.open(fp, mode="r") 调用此方法需要引入头文件:from PIL import Image. 参数说明: fp:图片路径,可为绝对路径或相对路径. model:默认即可. 2. 例子 2.1 Code 首先给定图片路径,然后调用函数Image.open()即可. import numpy as np import matplotlib.pyplot as plt from PIL import Image def plt_image(): image_…
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorch系列(二) - PyTorch数据读取 PyTorch系列(三) - PyTorch网络构建 PyTorch系列(四) - PyTorch网络设置 参考: PyTorch documentation PyTorch 码源 本文首先介绍了有关预处理包的源码,接着介绍了在数据处理中的具体应用: 其主要…
DataLoader与Dataset pytorch中的数据读取机制 graph TB DataLoader --> DataLoaderIter DataLoaderIter --> Sampler Sampler --> Index Sampler --> DatasetFetcher Index -->DatasetFetcher DatasetFetcher -->Dataset Dataset --> getitem getitem -->img,…
PyTorch使用总览 https://blog.csdn.net/u014380165/article/details/79222243 深度学习框架训练模型时的代码主要包含数据读取.网络构建和其他设置三方面,基本上掌握这三方面就可以较为灵活地使用框架训练模型.PyTorch是Facebook的官方深度学习框架之一,到现在开源1年时间,势头非常猛,相信使用过的人都会被其轻便和快速等特点深深吸引,因此这篇博客从整体上介绍如何使用PyTorch. PyTorch的官方github地址:https:…
首先介绍数据读取问题,现在TensorFlow官方推荐的数据读取方法是使用tf.data.Dataset,具体的细节不在这里赘述,看官方文档更清楚,这里主要记录一下官方文档没有提到的坑,以示"后人".因为是记录踩过的坑,所以行文混乱,见谅. I 问题背景 不感兴趣的可跳过此节. 最近在研究ENAS的代码,这个网络的作用是基于增强学习,能够自动生成合适的网络结构.原作者使用TensorFlow在cifar10上成功自动生成了网络结构,并取得了不错的效果. 但问题来了,此时我需要将代码转移…
获取数据集 读取小批量样本 小结 本节将使用torchvision包,它是服务于pytorch深度学习框架的,主要用来构建计算机视觉模型. torchvision主要由以下几个部分构成: torchvision.datasets:一些加载数据的函数以及常用的数据集的接口 torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet,VGG,ResNet: torchvision.transforms:常用的图片变换,例如裁剪,旋转等: torchvision.u…
实现一个定制的 Dataset 类 Dataset 类是 PyTorch 图像数据集中最为重要的一个类,也是 PyTorch 中所有数据集加载类中应该继承的父类.其中,父类的两个私有成员函数必须被重载. getitem(self, index) # 支持数据集索引的函数 len(self) # 返回数据集的大小 Datasets 的框架: class CustomDataset(data.Dataset): # 需要继承 data.Dataset def __init__(self): # TO…
一.项目说明 给定数据集train.csv,要求使用卷积神经网络CNN,根据每个样本的面部图片判断出其表情.在本项目中,表情共分7类,分别为:(0)生气,(1)厌恶,(2)恐惧,(3)高兴,(4)难过,(5)惊讶和(6)中立(即面无表情,无法归为前六类).所以,本项目实质上是一个7分类问题. 数据集介绍: (1).CSV文件,大小为28710行X2305列: (2).在28710行中,其中第一行为描述信息,即“label”和“feature”两个单词,其余每行内含有一个样本信息,即共有28709…
关于什么是线性回归,不多做介绍了.可以参考我以前的博客https://www.cnblogs.com/sdu20112013/p/10186516.html 实现线性回归 分为以下几个部分: 生成数据集 读取数据 初始化模型参数 定义模型 定义损失函数 定义优化算法 训练模型 生成数据集 我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别.设训练数据集样本数为1000,输入个数(特征数)为2.给定随机生成的批量样本特征 \(\boldsymbol{X} \…
文章目录 一.项目背景 二.数据处理 1.标签与特征分离 2.数据可视化 3.训练集和测试集 三.模型搭建 四.模型训练 五.完整代码 一.项目背景数据集cnn_train.csv包含人类面部表情的图片的label和feature.在这里,面部表情识别相当于一个分类问题,共有7个类别.其中label包括7种类型表情: 一共有28709个label,说明包含了28709张表情包嘿嘿.每一行就是一张表情包48*48=2304个像素,相当于4848个灰度值(intensity)(0为黑, 255为白)…
DataLoader DataLoader(dataset,batch_size=1,shuffle=False,sampler=None, batch_sampler=None,num_workers=0,collate_fn=None,pin_memory=False, drop_last=False,timeout=0,work_init_fn=None) 常用参数说明: dataset: Dataset类 ( 详见下文数据集构建 ),可以自定义数据集或者读取pytorch自带数据集 ba…
任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率.(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 pytorch:1.5.1 代码地址GitHub:https://github.com/xiaohuiduan/deeplearning-study/tree/main/手写数字识别 数据集介绍 MNIST数字数据集来自MNIST handwritten digit database, Yann LeC…
IDE:jupyter 目前我知道的数据集来源有两个,一个是csv数据集文件另一个是从sklearn.datasets导入 1.1 csv格式的数据集(下载地址已上传到博客园----数据集.rar)   1.2  数据集读取 file = "flower.csv" import pandas as pd df = pd.read_csv(file, header=None) df.head(10) 1.3结果  2.1  sklearn中的数据集 from sklearn.datase…
PyTorch中数据读取的一个重要接口是torch.utils.data.DataLoader,该接口定义在dataloader.py脚本中,只要是用PyTorch来训练模型基本都会用到该接口, 该接口主要用来将自定义的数据读取接口的输出或者PyTorch已有的数据读取接口的输入按照batch size封装成Tensor,后续只需要再包装成Variable即可作为模型的输入, 因此该接口有点承上启下的作用,比较重要…
  不论是数据分析,数据可视化,还是数据挖掘,一切的一切全都是以数据作为最基础的元素.利用Python进行数据分析,同样最重要的一步就是如何将数据导入到Python中,然后才可以实现后面的数据分析.数据可视化.数据挖掘等. 在本期的Python学习中,我们将针对Python如何获取外部数据做一个详细的介绍,从中我们将会学习以下4个方面的数据获取: 1.读取文本文件的数据,如txt文件和csv文件 2.读取电子表格文件,如Excel文件 3.读取统计软件生成的数据文件,如SAS数据集.SPSS数据…
目录 1. 前言 # 2. Deep Learning with PyTorch: A 60 Minute Blitz 2.1 base operations 2.2 train a classifier 3 规范化pytorch训练MNIST数据集 1. 前言   最近在学习pytorch,先照着官方的"60分钟教程"学习了一下,然后再github上找了两个star比较多的项目,自己写了一下,学习一下别人的写法. # 2. Deep Learning with PyTorch: A…
原文链接 https://blog.csdn.net/u014380165/article/details/79058479 写得特别好!最近正好在学习pytorch,学习一下! PyTorch中数据读取的一个重要接口是torch.utils.data.DataLoader,该接口定义在dataloader.py脚本中,只要是用PyTorch来训练模型基本都会用到该接口,该接口主要用来将自定义的数据读取接口的输出或者PyTorch已有的数据读取接口的输入按照batch size封装成Tensor…