ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   1. 引言: 本文尝试用 基于四个方向的 RNN 来替换掉 CNN中的 convolutional layer(即:卷积+Pooling 的组合).通过在前一层的 feature 上进行四个方向的扫描,完成特征学习的过程. The recurrent layer ensures that each…
Deep Attention Recurrent Q-Network 5vision groups  摘要:本文将 DQN 引入了 Attention 机制,使得学习更具有方向性和指导性.(前段时间做一个工作打算就这么干,谁想到,这么快就被这几个孩子给实现了,自愧不如啊( ⊙ o ⊙ ))   引言:我们知道 DQN 是将连续 4帧的视频信息输入到 CNN 当中,那么,这么做虽然取得了不错的效果,但是,仍然只是能记住这 4 帧的信息,之前的就会遗忘.所以就有研究者提出了 Deep Recurre…
论文笔记 <Maxout Networks> && <Network In Network> 发表于 2014-09-22   |   1条评论 出处 maxout:http://arxiv.org/pdf/1302.4389v4.pdfNIN:http://arxiv.org/abs/1312.4400 参考 maxout和NIN具体内容不作解释下,可以参考:Deep learning:四十五(maxout简单理解)Network In Network 各用一句话…
论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Pruning by learning only the important connections. all connections with weights below a threshold are removed from the network. retrain the network to learn the…
Deep Attentive Tracking via Reciprocative Learning NIPS18_tracking Type:Tracking-By-Detection 本篇论文地主要创新是在将注意机制引入到目标跟踪 摘要:源自认知神经科学地视觉注意促进人类对相关的内容的感知.近些年大量工作将注意机制引入到计算机视觉系统中.对于视觉跟踪来说,面临的最大问题在于目标外表的大尺度变化.自注图通过选择性关注临时的鲁棒特征提升视觉跟踪的性能.当前的一些检测跟踪算法主要使用额外的自注模型…
RATM: RECURRENT ATTENTIVE TRACKING MODEL ICLR 2016 本文主要内容是 结合 RNN 和 attention model 用来做目标跟踪. 其中模型的组成主要是: 1. an attention model 主要用来从输入图像中提取 patch: 2. RNN 用来预测 attention 参数,即:下一帧应该 look 的问题. Paper: http://xueshu.baidu.com/s?wd=RATM%3A+RECURRENT+ATTENT…
Attention For Fine-Grained Categorization Google ICLR 2015 本文说是将Ba et al. 的基于RNN 的attention model 拓展为受限更少,或者说是非受限的视觉场景.这个工作和前者很大程度上的不同在于,用一个更加有效的视觉网络,并且在attention RNN之外进行视觉网络的预训练. 前人的工作在学习 visual attention model 时已经解决了一些计算机视觉问题,并且表明加上不同的attention mec…
这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不同场景下的角度.背景亮度等等因素的差异,同一个人的图像变化非常大,因而不能使用一般的图像分类的方法.论文采用了一种相似性度量的方法来促使神经网络学习出图像的特征,并根据特征向量的欧式距离来确定相似性.除此之外,论文通过对网络的训练过程进行分析,提出了一种计算效率更高的模型训练方法. 论文方法 相似性…
之前提到,深度神经网络在训练中容易遇到梯度消失/爆炸的问题,这个问题产生的根源详见之前的读书笔记.在 Batch Normalization 中,我们将输入数据由激活函数的收敛区调整到梯度较大的区域,在一定程度上缓解了这种问题.不过,当网络的层数急剧增加时,BP 算法中导数的累乘效应还是很容易让梯度慢慢减小直至消失.这篇文章中介绍的深度残差 (Deep Residual) 学习网络可以说根治了这种问题.下面我按照自己的理解浅浅地水一下 Deep Residual Learning 的基本思想,并…
1. 摘要 为解决姿态变化的问题,作者提出Pose-driven-deep convolutional model(PDC),结合了global feature跟local feature, 而local feature 还用一个feature weight network(FWN) 进行重要性程度度量,在常用reid数据集 CUHK03 .Market1501.viper 上面取到了非常好的效果. 2. 介绍 这个PDC模型有两个比较重要的子网络:FEN FWN:最后整合global feat…