Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说: 如果最小生成树选择的边集是 EM,严格次小生成树选择的边集是 ES,那么需要满足:(value(e) 表示边 e的权值) 这下小 C 蒙了,他找到了你,希望你帮他解决这个问题. Input 第一行包含两个整数N 和M,表示无向图的…
Brief Description 求一个无向图的严格次小生成树. Algorithm Design 考察最小生成树的生成过程.对于一个非树边而言,如果我们使用这一条非树边去替换原MST的路径上的最大边,可以证明仍然满足生成树性质,而且这个生成树的大小一定不小于原生成树,那么枚举所有这样的非树边,尝试去替换,找到最小值就可以了. 那么问题就转化成了求树上两个点的最大/最小距离,这是树上倍增的经典应用,可以知道: \[Max(x,i) = max(Max(x,i-1), Max(fa(x,i-1)…
和倍增法求lca差不多,维护每个点往上跳2^i步能到达的点,以及之间的边的最大值和次大值,先求出最小生成树,对于每个非树边枚举其端点在树上的路径的最大值,如果最大值和非树边权值一样则找次大值,然后维护答案即可. 代码 #include<cstdio> #include<algorithm> using namespace std; ; ; ; int f[N],n,m,i; int dp,p[N],pre[M],tt[M],ww[M],flag[M]; ],mi[N][],Mi[N…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1977 因为严格,所以要记录到 LCA 的一个次小值: 很快写好,然后改掉一堆错误后终于过了样例!然而交上去1WA: 又改了半天,还是WA,于是放弃,抄题解好久... 然而就在我调了一个小时终于锁定错误就在那个子函数里的时候才突然看到了自己的明显惊天大错误是怎么回事??!!!稍微改了一下下就完美AC... 不过还有点收获,把求各种层次的 f 放在 dfs 函数里会比单独拿出来再求一遍快 10…
[BZOJ1977][BeiJing2010组队]次小生成树 Tree Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说: 如果最小生成树选择的边集是 EM,严格次小生成树选择的边集是 ES,那么需要满足:(value(e) 表示边 e的权值)  这下小 C 蒙了,他找到了你,希望…
做一次MST, 枚举不在最小生成树上的每一条边(u,v), 然后加上这条边, 删掉(u,v)上的最大边(或严格次大边), 更新答案. 树链剖分然后ST维护最大值和严格次大值..倍增也是可以的... ------------------------------------------------------------------------------ #include<bits/stdc++.h>   using namespace std;   #define b(i) (1 <&l…
1977: [BeiJing2010组队]次小生成树 Tree https://lydsy.com/JudgeOnline/problem.php?id=1977 题意: 求严格次小生成树,即边权和不能等于最小生成树. 分析: 倍增:求出最小生成树,然后枚举非树边,加入一条非树边,删掉环上的最大的边,如果最大的边等于加入的边,那么删掉环上次小的边. LCT:直接维护链上最大值,与次大值. 代码: 倍增 #include<bits/stdc++.h> using namespace std; t…
1977: [BeiJing2010组队]次小生成树 Tree Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 5168  Solved: 1668[Submit][Status][Discuss] Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次…
题目描述 求一张图的严格次小生成树的边权和,保证存在. 输入 第一行包含两个整数N 和M,表示无向图的点数与边数. 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z. 输出 包含一行,仅一个数,表示严格次小生成树的边权和.(数据保证必定存在严格次小生成树) 样例输入 5 6 1 2 1 1 3 2 2 4 3 3 5 4 3 4 3 4 5 6 样例输出 11 题解 最小生成树+权值线段树合并 首先有一个常用的结论:次小生成树(无论是否严格)只要存在,则一定可…
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小生成树弄出来,因为要求次小生成树.至于为什么次小一定只在最小的基础上改变了一条边,我也不会严谨的证明......打表找规律大法好 剩下的可以有一堆数据结构来维护最大值和次大值(原理两位巨佬都讲清楚了,这里只分析一下算法的优劣) kruscal+倍增+LCA 山楠巨佬的做法,我也写了这一种.复杂度\(…