水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有其他直线,$1\le n 5\cdot 10^4$. 想法:神题qwq.看见网上的做法突然有一种学计算几何的冲动,直到看见一篇大神的blog说用单调栈做?这题困难其实就困难在如何规定两条直线之间本不存在的单调性.用单调栈就是讲即将进栈元素不断和栈顶比较,然后弹来弹去最后剩下的都是可见的.不容易难想到:将直…
[BZOJ1007]水平可见直线(单调栈) 题解 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y=x; L2:y=-x; L3:y=0 则L1和L2是可见的,L3是被覆盖的. 给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50…
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1007 给出一些直线,沿着y轴从上往下看,能看到多少条直线. 分析 由于直线相交,会遮挡住一些直线. 自己画画图就可以发现,最后能看见的直线,也就是在最上面的那些直线一定构成一个凸包的下凸壳(没错一定是凸的). 接下来就是如何求这个下凸壳了. 先按照斜率为第一关键字,截距为第二关键字,将直线从小到大排序.用一个斜率单调递增的栈来维护凸壳. 我们按照排序后的顺序添加直线,画画图会发现: 1.斜率…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5120  Solved: 1899[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:     L1:y=x; L2:y=-x; L3:y=0     则L1和L…
题目链接 把线段以斜率为第一关键字,截距为第二关键字升序排序. 然后维护一个单调栈,保证栈中两两线段的交点的\(x\)坐标单调上升就行了.栈中的线段即为所求. #include <cstdio> #include <algorithm> using namespace std; const int MAXN = 50010; struct Seg{ double k, b; int id; int operator < (const Seg A) const{ return…
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1007 按斜率排序,去掉斜率相同时,截距较小的直线(即只保留该斜率下截距最大的直线).若当前直线与栈顶直线的交点的x坐标<=栈顶直线与栈顶第二条直线的交点的x左边,则pop,直到前者大于后者为止,因为若小于等于,那么栈顶这条直线一定被覆盖. #include <cstdio> #include <algorithm> const int maxn = 50005; int…
Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8638  Solved: 3327[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,…
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. 很明显最后的结果应该是一个斜率递增的结果,那么我们先按斜率排序,然后用单调栈维护,如果要加入的线i和last-1的交点在i和last的左…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的交点的位置关系即可. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int n,top,ans[max…
题目大意 给你\(n\)条直线\(y=kx+b\),问你从\(y\)值为正无穷大处往下看能看到那些直线. \(1\leq n\leq 500000\) 题解 如果对于两条直线\(l_i,l_j\),\(k_i=k_j\)且\(b_i>b_j\),那么\(l_j\)不可能被看见. 把直线按\(k\)从小到大排序.如果发生了下图的情况(即\(l_1\)与\(l_3\)的交点的\(x\)坐标比\(l_2\)与\(l_3\)的交点的\(x\)坐标小),则\(l_2\)就不可能被看见.我们可以用栈来维护当…
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y=x; L2:y=-x; L3:y=0 则L1和L2是可见的,L3是被覆盖的. 给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output…
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:     L1:y=x; L2:y=-x; L3:y=0     则L1和L2是可见的,L3是被覆盖的.     给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000),接下来的N…
Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格 Sample Input 3-1 01 00 0 Sample Output 1 2 题解 算法比较直观,先按斜率排序,再将最小的两条线入栈,然后依次处理每条线,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈 :这样为什么对呢?因为对如任意一个开口向上的半凸包,从左到右依次观察每条边和每…
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y=x; L2:y=-x; L3:y=0 则L1和L2是可见的,L3是被覆盖的. 给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output…
cycleke神说要用半平面交(其实他也用的凸包),把我吓了一跳,后来发现(看题解)其实可以先按斜率排序,再将最小的两条线入栈,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈.这是一个开口向上的半凸包. #include <cstdio> #include <iostream> #include <cstring> #include <algorithm> #include <cmath> #define eps 1e-8 using…
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x; L2:y=-x; L3:y=0 则L1和L2是可见的,L3是被覆盖的. 给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从…
不会写半平面交-然后发现可以转成对偶凸包问题 具体见这里:http://trinkle.blog.uoj.ac/blog/235 相关的原理我好像还是不太懂-orz #include<cstdio> #include<algorithm> const int N=50005; inline int read() { int s=0,f=1;char c=getchar(); while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}…
[BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5932  Solved: 2254[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7940  Solved: 3030[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1007 Description  在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:     L1:y=x; L2:y=-x; L3:y=0  …
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4453  Solved: 1636[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.    例如,对于直线:    L1:y=x; L2:y=-x; L3:y=0    则L1和L2是可…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2741[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的. 给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可…
BZOJ_1307_玩具_单调栈+双指针 Description 小球球是个可爱的孩子,他喜欢玩具,另外小球球有个大大的柜子,里面放满了玩具,由于柜子太高了,每天小球球都会让妈妈从柜子上拿一些玩具放在地板上让小球球玩. 这天,小球球把所有的N辆玩具摆成一排放在地上,对于每辆玩具i,小球球都会给它涂上一个正整数value[i],以表示小球球对该玩具的喜爱程度,value[i]越小则表示他越喜爱.当然对于两辆不同的玩具u,v(u<>v),亦有可能value[i]=value[j],也就是说小球球对…
1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.    例如,对于直线:    L1:y=x; L2:y=-x; L3:y=0    则L1和L2是可见的,L3是被覆盖的.    给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 <…
题目描述 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. 输入 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi 输出 从小到大输出可见直线的编号,两两中间…
题目链接 可以看出我们是要维护一个下凸壳. 先对斜率从小到大排序.斜率最大.最小的直线是一定会保留的,因为这是凸壳最边上的两段. 维护一个单调栈,栈中为当前可见直线(按照斜率排序). 当加入一条直线l时,可以发现 如果l与栈顶直线l'的交点p在 l'入栈前与栈顶直线 的交点p'的左侧,那么l会覆盖l'(直接用与第一条直线的交点好像也可以?).弹出l'加入l. 如果p在p'右侧,则保留栈顶直线,并将l入栈:如果重合,那么后加入的直线应该会覆盖l',弹出l'加入l. 在斜率符号改变时结果也是一样的.…
题目描述:在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. 题解: 一道很好的思维题.1.简单手画一下,能被看到的直线应该是所有直线一起围成的大凸包.2.由于是凸包,我们考虑将所有直线按…
先按斜率从小到大排序,然后如果排在后面的点B和前面的点A的交点是P,那B会把A在P的右半段覆盖掉,A会把B在P的左半段覆盖掉. 然后如果我们现在又进来了一条线,它跟上一条的交点还在上一条和上上条的左边,这就说明上一条完全被覆盖了 这样的话,维护一个单调栈做一做就可以了 (要先处理一下,斜率相同的只留下B最大的,而且会有重合的线,都要输出) #include<bits/stdc++.h> #define pa pair<int,int> #define ll long long us…