首先,我们不难发现N个位置都选一定不会比少选任意几个差,所以我们就先设定我们将这N个修改机会都用上, 那么如果点 i">ii 前有sumv">sumvsumv个可修改点要被选的话,当前点被选择的条件是减掉sumv">sumvsumv后依然能和前面已减掉过sumv">sumvsumv的进行匹配. Code: #include<cstring> #include<cstdio> #include<algorithm&…
[BZOJ5427]最长上升子序列/[BZOJ4282]慎二的随机数列 题目大意: 给你一个长度为\(n(n\le10^5)\)的整数序列,其中有一些数已经模糊不清了,现在请你任意确定这些整数的值,使得最长上升子序列最长.求最长长度. 思路: 一定存在一种最优方案使得不确定的都选上(考虑新选上一个不确定的数,最多会使一个已确定的数失效),因此令\(a_i=a_i-cnt\)(\(cnt\)为之前不确定的数的个数),求LIS后加上\(cnt\)即可. 源代码: #include<cstdio>…
题是水题,学习一下用树状数组求LIS. 先离散化一下,注意去重:然后就把a[i]作为下标,dp[i]作为值,max作为维护的运算插进树状数组即可. 如果是上升子序列,询问(a[i] - 1):如果是不下降子序列,询问(a[i]). ; int n, m, a[maxn], b[maxn], dp[maxn], f[maxn]; void Modify(int x, int val) { for (; x <= m; x += x&-x) f[x] = max(f[x], val); } in…
慎二的随机数列 bzoj-4282 题目大意:一个序列,序列上有一些数是给定的,而有一些位置上的数可以任意选择.问最长上升子序列. 注释:$1\le n\le 10^5$. 想法:结论:逢N必选.N是可以任意选择的位置. 具体的,我们将所有N踢出序列,将给定的权值-=前面N的个数.再在当前序列上求最长上升子序列. 正确性的话如果当前序列中的数: 如果前面的数小于后面的数,显然中间的N我也可以加上. 如果前面的数大于后面的数: 如果前面的数在原序列中的权值大于后面的数在原序列中的权值,那么这两个数…
首先在开头加上-inf,结尾加上inf,最后答案减2即可. 设s[i]为i之前未知的个数,f[i]为以i结尾的LIS,且a[i]已知,那么: f[i]=max(f[j]+min(s[i]-s[j],a[i]-a[j]-1))+1,其中j<i,a[j]<a[i]且a[j]已知 将min分类讨论后可转化为三维偏序,CDQ分治+扫描线+树状数组即可,时间复杂度$O(n\log^2n)$. #include<cstdio> #include<algorithm> using s…
题意: 一个序列可能有多个最长子序列,现在问每个元素是以下三个种类的哪一类: 1.不属于任何一个最长子序列 2.属于其中某些但不是全部最长子序列 3.属于全部最长子序列 解法: 我们先求出dp1[i]表示1~i 的最长递增子序列长度, dp2[i]表示 n~i 的最长递减子序列长度(严格增减),这里我们可以用维护最大值的树状数组来解决,开始还以为要用nlogn求LIS的那种算法,当然那样应该也可以,这里元素值是1~10^5的,可以直接用树状数组,如果元素值任意的话,我们离散化一下也可以用树状数组…
题目:http://poj.org/problem?id=1631 求LIS即可,我使用了树状数组. 代码如下: #include<iostream> #include<cstdio> #include<cstring> using namespace std; int n,p,a[40005],f[40005]; int query(int x) { int ret=0; for(;x;x-=x&-x) ret=max(ret,f[x]); return re…
我真的是咸鱼啊 多少年前的基础了我竟然才弄明白,哭 用树状数组维护<=x的最上上升子序列的最大值即可啊Orz 我真的菜的一笔啊! #include <bits/stdc++.h> using namespace std; map<int,int>mp; int f[50005],n,t[50005]; void modify(int x,int Max){ for(int i=x;i<=50004;i+=i&-i) { t[i]=max(t[i],Max); }…
海带头又上线了QwQ~ 这是一个奇怪的lis问题 显然一定存在一种最优答案使所有辨认不清的数都在答案中. [为什么呢]因为你完全可以用一个'N'来替换一个'K'啊QwQ~ 那么在选完所有'N'之后,一个为'K'的数的值val[i]就可以理解为val[i]-num,num指它之前'N'的个数(因为是严格单调增的) 然后就是裸的lis啦~,记得答案要加上'N'的个数. #include<iostream> #include<algorithm> #include<cstdio&g…
如果数组元素较大,需要离散化. #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <map> #include <set> #include <vector> #i…