solver及其配置】的更多相关文章

solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover.prototxt 在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解.solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法. 到目前的版本,…
solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover.prototxt 在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解.solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法. 到目前的版本,…
solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover.prototxt 在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解.solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法. 到目前的版本,…
原文: http://blog.csdn.net/czp0322/article/details/52161759 今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是model里自带的,一直都对里面的参数不是很了解,所以今天认真学习了一下里面各个参数的意义. DL的任务中,几乎找不到解析解,所以将其转化为数学中的优化问题.sovler的主要作用就是交替调用前向传导和反向传导 (forward & backward) 来更新神经网络的连接权值,从而达到最小化loss,实际…
solver是caffe的核心. net: "examples/mnist/lenet_train_test.prototxt" test_iter: 100 test_interval: 500 //每训练500次进行一次测试 base_lr: 0.01 momentum: 0.9 type: SGD weight_decay: 0.0005 lr_policy: "inv" gamma: 0.0001 power: 0.75 display: max_iter:…
http://blog.csdn.net/czp0322/article/details/52161759 solver.prototxt 今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是model里自带的,一直都对里面的参数不是很了解,所以今天认真学习了一下里面各个参数的意义. DL的任务中,几乎找不到解析解,所以将其转化为数学中的优化问题.sovler的主要作用就是交替调用前向传导和反向传导 (forward & backward) 来更新神经网络的连接权值,从而…
caffe solver通过协调网络前向推理和反向梯度传播来进行模型优化,并通过权重参数更新来改善网络损失求解最优算法,而solver学习的任务被划分为:监督优化和参数更新,生成损失并计算梯度.caffe solver是caffe中的核心,它定义着整个模型如何运转,不管是命令行方式还是pycaffe接口方式进行网络训练或测试,都是需要一个solver配置文件的,而solver的配置参数总共有42个,罗列如下: net weight_decay net_param regularization_t…
本文旨在解决如何编写solver文件. Solver的流程: 1.     设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络.(通过调用另外一个配置文件prototxt来进行) 2.     通过forward和backward迭代的进行优化来跟新参数. 3.     定期的评价测试网络. (可设定多少次训练后,进行一次测试) 4.     在优化过程中显示模型和solver的状态 solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就…
转自Caffe fine-tuning 微调网络 一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据.因为像在ImageNet上毕竟是一个千万级的图像数据库,通常我们可能只能拿到几千张或者几万张某一特定领域的图像,比如识别衣服啊.标志啊.生物种类等等.在这种情况下重新训练一个新的网络是比较复杂的,而且参数不好调整,数据量也不够,因此fine-tuning微调就是一个比较理想的选择. 所谓fine tune就是用别人训练好的模型,加上我们自己的数据,来训练新的模…
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 目前呢,caffe,theano,torch是当下比较流行的Deep Learning的深度学习框架,楼主最近也在做一些与此相关的事情.在这里,我主要介绍一下如何在Caffe上微调网络,适应我们自己特定的新任务.一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据.因为像在ImageNet上毕竟是一个千万级的图像数据库,通常我们…