洛谷 P1324 矩形分割】的更多相关文章

P1324 矩形分割 题目描述 出于某些方面的需求,我们要把一块N×M的木板切成一个个1×1的小方块. 对于一块木板,我们只能从某条横线或者某条竖线(要在方格线上),而且这木板是不均匀的,从不同的线切割下去要花不同的代价.而且,对于一块木板,切割一次以后就被分割成两块,而且不能把这两块木板拼在一起然后一刀切成四块,只能两块分别再进行一次切割. 现在,给出从不同的线切割所要花的代价,求把整块木板分割成1×1块小方块所需要耗费的最小代价. 输入输出格式 输入格式: 输入文件第一行包括N和M,表示长N…
洛谷题目链接 动态规划: 我们设状态$f[i][j][o][p][k]$表示一个矩形,左上角顶点坐标为$(i,j)$,右下角顶点坐标为$(o,p)$时分割了$k$次,也就是说现在是$k+1$块 我们考虑状态转移: 枚举$ii$为切割某列,那么状态转移如下: $minn=min(minn,min(f[i][j][o][ii][k-1]+f[i][ii+1][o][p][0],f[i][j][o][ii][0]+f[i][ii+1][o][p][k-1]))$ 枚举$ii$为切割某行,那么状态转移如…
P1436 棋盘分割 题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次切割都只能沿着棋盘格子的边进行) 原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和.现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的平方和最小. 请编程对给出的棋盘及n,求出平方和的最小值. 输入输出格式 输入格式: 第1行为一个整数n(1 <…
P3145 [USACO16OPEN]分割田地Splitting the Field 题目描述 Farmer John's NN cows (3 \leq N \leq 50,0003≤N≤50,000) are all located at distinct positions in his two-dimensional field. FJ wants to enclose all of the cows with a rectangular fence whose sides are pa…
题目描述 出于某些方面的需求,我们要把一块N×M的木板切成一个个1×1的小方块. 对于一块木板,我们只能从某条横线或者某条竖线(要在方格线上),而且这木板是不均匀的,从不同的线切割下去要花不同的代价.而且,对于一块木板,切割一次以后就被分割成两块,而且不能把这两块木板拼在一起然后一刀切成四块,只能两块分别再进行一次切割. 现在,给出从不同的线切割所要花的代价,求把整块木板分割成1×1块小方块所需要耗费的最小代价. \(n \leq 10000\) 错误日志: \(sort\) 第二个数组的时候填…
P1034 矩形覆盖 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴.当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4.问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢.约定:覆盖一个点的矩形面积为…
P2217 [HAOI2007]分割矩阵 题目描述 将一个a*b的数字矩阵进行如下分割:将原矩阵沿某一条直线分割成两个矩阵,再将生成的两个矩阵继续如此分割(当然也可以只分割其中的一个),这样分割了(n-1)次后,原矩阵被分割成了n个矩阵.(每次分割都只能沿着数字间的缝隙进行) 原矩阵中每一位置上有一个分值,一个矩阵的总分为其所含各位置上分值之和.现在需要把矩阵按上述规则分割成n个矩阵,并使各矩阵总分的均方差最小. 请编程对给出的矩阵及n,求出均方差的最小值. 输入输出格式 输入格式: 第一行为3…
P1034 矩形覆盖 题目描述 在平面上有nn个点(n \le 50n≤50),每个点用一对整数坐标表示.例如:当 n=4n=4 时,44个点的坐标分另为:p_1p1​(1,11,1),p_2p2​(2,22,2),p_3p3​(3,63,6),P_4P4​(0,70,7),见图一. 这些点可以用kk个矩形(1 \le k \le 41≤k≤4)全部覆盖,矩形的边平行于坐标轴.当 k=2k=2 时,可用如图二的两个矩形 s_1,s_2s1​,s2​ 覆盖,s_1,s_2s1​,s2​ 面积和为4…
https://www.luogu.org/problemnew/show/P1034 可能是数据太水了瞎搞都可以过. 判断两个平行于坐标轴的矩形相交(含顶点与边相交)的代码一并附上. 记得这里的xy和udlr是指数学上的坐标轴. #include<bits/stdc++.h> using namespace std; #define ll long long struct Point{ int x,y; Point(,){ this->x=x,this->y=y; } }p[];…
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴.当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4.问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢.约定:覆盖一个点的矩形面积为 0:覆盖平行于坐标轴…