首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
从软件project的角度写机器学习3——主要监督学习算法的project性分析
】的更多相关文章
从软件project的角度写机器学习3——主要监督学习算法的project性分析
主要机器学习算法的project适用性分析 前段时间AlphaGo跟李世石的大战及相关的深度学习的新闻刷了一遍又一遍的朋友圈.只是这件事情,也仅仅是在机器学习的深度上进一步拓展,而机器学习的广度(也即project化实践)上,仍然没有什么突破性的理论或实践,用的领域继续用,不用的领域依旧不用. project性分析的作用 project上的琐事 机器学习的使命是使计算机强大的运算能力和存储能力转化为推演能力.能转化是一方面.转化的效率则是还有一方面.科研性质的AlphaGo,拥有近乎无限的计算资…
吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window10.0 实验内容和原理 (1)实验内容: 使用k近邻算法改进约会网站的配对效果.海伦使用约会网址寻找适合自己的约会对象,约会网站会推荐不同的人选.她将曾经交往过的的人总结为三种类型:不喜欢的人.魅力一般的人.极具魅力的人.尽管发现了这些规律,但依然无法将约会网站提供的人归入恰当的分类.使用KNN算…
Python机器学习笔记 K-近邻算法
K近邻(KNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一. 所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.KNN算法的核心思想是如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特征.该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别.KNN方法在类别决策时,只与极少数的相邻样本有关.由于kNN方法主要靠周围有限的邻近的…
python机器学习笔记:EM算法
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于EM算法,我们主要从以下三个方向学习: 1,最大似然 2,EM算法思想及其推导 3,GMM(高斯混合模型) 1,最大似然概率 我们经常会从样本观察数据中,找到样本的模型参数.最常用的方法就是极大化模型分布的对数似然函数.怎么理解呢?下面看我一一道来. 假设我们需要调查我们学习的男生和女生的身高分布.你…
Python 机器学习实战 —— 无监督学习(上)
前言 在上篇<Python 机器学习实战 -- 监督学习>介绍了 支持向量机.k近邻.朴素贝叶斯分类 .决策树.决策树集成等多种模型,这篇文章将为大家介绍一下无监督学习的使用.无监督学习顾名思义数据中不包含已知的输出结果,学习算法中只有输入数据,算法需要从这些输入数据中提取相关规律.无监督学习主要分为两种类型:数据集变换与聚类算法,数据集的无监督变换是创建数据集的新的表达方式,使其特性更容易理解,最常见的模型有 PCA.NMF.t-SNE 等模型.聚类算法则是将数据划分成不同的组,每组数据中包…
Description Resource Path Location Type Project configuration is not up-to-date with pom.xml. Select: Maven->Update Project... from the project context menu or use Quick Fix. spark-MT line 1 Maven Co
1.相信大家新建的maven项目,然后添加好依赖(即修改了pom.xml文件以后就会出现如下所示的错误): Description Resource Path Location Type Project configuration Maven Configuration Problem 截图如下所示: 大致意思呢,读读英语还是挺有意思的,错误提示说,项目的配置没有及时更新with 这个pom.xml文件,所以更新一下配置文件即可.操作如下所示: 即鼠标右击错误,然后点击弹出的Quick Fix,…
<机器学习>无监督学习算法总结
本文仅对常见的无监督学习算法进行了简单讲述,其他的如自动编码器,受限玻尔兹曼机用于无监督学习,神经网络用于无监督学习等未包括.同时虽然整体上分为了聚类和降维两大类,但实际上这两类并非完全正交,很多地方可以相互转化,还有一些变种的算法既有聚类功能又有降维功能,一些新出现的和尚在开发创造中的无监督学习算法正在打破聚类和降维的类别划分.另外因时间原因,可能有个别小错误,如有发现还望指出. 一.聚类(clustering) 1.k-均值聚类(k-means) 这是机器学习领域除了线性回归最简单的算法了.…
Coursera机器学习笔记(一) - 监督学习vs无监督学习
转载 http://daniellaah.github.io/2016/Machine-Learning-Andrew-Ng-My-Notes-Week-1-Introduction.html 一. 监督学习 什么是监督学习? 我们来看看维基百科中给出的定义: 监督式学习(英语:Supervised learning),是一个机器学习中的方法,可以由训练资料中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例.训练资料是由输入物件(通常是向量)和预期输出所组成.…
机器学习入门:K-近邻算法
机器学习入门:K-近邻算法 先来一个简单的例子,我们如何来区分动作类电影与爱情类电影呢?动作片中存在很多的打斗镜头,爱情片中可能更多的是亲吻镜头,所以我们姑且通过这两种镜头的数量来预测这部电影的主题.简单的说,k-近邻算法 采用了测量不同特征值之间的距离方法进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.控件复杂度高 适用数据范围:数值型和标称型 首先我们来理解它的工作原理: 存在一个样本数据集(训练集),并且我们知道每一数据与目标变量的对应关系,输入没有标签的新数…
机器学习之路--KNN算法
机器学习实战之kNN算法 机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组和矩阵,提供了大量的矩阵处理函数,使运算更加容易,执行更加迅速. (3)matplotlib 1.5.3,64位,在下载该工具时,一定要对应好python的版本,处理器版本,matplo…