hdu 1163】的更多相关文章

HDU 1163 题意简单,求n^n的(1)各数位的和,一旦和大于9,和再重复步骤(1),直到和小于10. //方法一:就是求模9的余数嘛! (228) leizh007 2012-03-26 21:03:19 (确实可行) #include<stdio.h> #include<string.h> int main() { int n,i,ans; while(scanf("%d",&n),n) { ans=; ;i<n;i++) { ans=(a…
http://acm.hdu.edu.cn/showproblem.php?pid=1163 九余数定理: 如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除:如果一个数各个数位上的数字之和被9除余数是几,那么这个数被9除的余数也一定是几. 证明: 首先10^i =99...9(i个9) +1除以9的余数=1 所以ai*10^i除以9的余数=ai 用a0~an表示各位数字则数=(anan-1an-2.a2a1a0), =an*10^n+an-1*10^n-1 +an-2 *10^n…
Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 5783    Accepted Submission(s): 3180 Problem Description The digital root of a positive integer is found by summing the digit…
Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 5928    Accepted Submission(s): 3270 Problem Description The digital root of a positive integer is found by summing the digit…
别人的代码开始自己不知道什么数论解法: ab*ab=(a*10+b)(a*10+b)=a^2*100+2ab*10+b^2 所以the root digital=(a+b)*(a+b): 而数论中的定理:两数之积对9取余数等于两数对9的余数的乘积. 代码: #include"stdio.h" int main() { int i,n,sum; while(scanf("%d",&n)!=EOF&&n!=0) { sum=1; for(i=0;…
HDU 模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 1049 1050 1057 1062 1063 1064 1070 1073 1075 1082 1083 1084 1088 1106 1107 1113 1117 1119 1128 1129 1144 1148 1157 1161 1170 1172 1177 1197 1200 1201…
转载来自:http://www.cppblog.com/acronix/archive/2010/09/24/127536.aspx 分类一: 基础题:1000.1001.1004.1005.1008.1012.1013.1014.1017.1019.1021.1028.1029.1032.1037.1040.1048.1056.1058.1061.1070.1076.1089.1090.1091.1092.1093.1094.1095.1096.1097.1098.1106.1108.1157…
模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 1049 1050 1057 1062 1063 1064 1070 1073 1075 1082 1083 1084 1088 1106 1107 1113 1117 1119 1128 1129 1144 1148 1157 1161 1170 1172 1177 1197 1200 1201 120…
King's Game 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5643 Description In order to remember history, King plans to play losephus problem in the parade gap.He calls n(1≤n≤5000) soldiers, counterclockwise in a circle, in label 1,2,3...n. The firs…
转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012.1013.1014.1017.1019.1021.1028.1029. 1032.1037.1040.1048.1056.1058.1061.1070.1076.1089.1090.1091.1092.1093. 1094.1095.1096.1097.1098.1106.1108.1157.116…