首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[笔记]机器学习(Machine Learning) - 03.正则化(Regularization)
】的更多相关文章
[笔记]机器学习(Machine Learning) - 03.正则化(Regularization)
欠拟合(Underfitting)与过拟合(Overfitting) 上面两张图分别是回归问题和分类问题的欠拟合和过度拟合的例子.可以看到,如果使用直线(两组图的第一张)来拟合训,并不能很好地适应我们的训练集,这就叫欠拟合(Underfitting),但是如果x的次数太高(两组图的第三张),拟合虽然很好,但是预测能力反而变差了,这就是过拟合(Overfitting). 对于欠拟合,我们可以适当增加特征,比如加入x的多次方.通常这很少发生,发生的多的都是过拟合.那么如何处理过度拟合呢? 1. 丢弃…
[笔记]机器学习(Machine Learning) - 01.线性回归(Linear Regression)
线性回归属于回归问题.对于回归问题,解决流程为: 给定数据集中每个样本及其正确答案,选择一个模型函数h(hypothesis,假设),并为h找到适应数据的(未必是全局)最优解,即找出最优解下的h的参数.这里给定的数据集取名叫训练集(Training Set).不能所有数据都拿来训练,要留一部分验证模型好不好使,这点以后说.先列举几个几个典型的模型: 最基本的单变量线性回归: 形如h(x)=theta0+theta1*x1 多变量线性回归: 形如h(x)=theta0+theta1*x1+thet…
[笔记]机器学习(Machine Learning) - 00.目录/大纲/写在之前
目录会根据我的学习进度而更新,给自己列一个大纲以系统地看待整个学习过程. 学习资料来源 学习的是Coursera上吴恩达(Andrew Ng)老师的机器学习视频(课程传送门,最近在"最强大脑"上看到他了好激动啊,原来他去做百度大脑了呀),笔记根据此系列视频整理.笔记顺序不一定与原教程一样,希望加入些自己的思考. 同时使用了网上找到的黄海广博士的对于吴大大视频教程的笔记(传送门).因为我一开始看视频没做笔记,现在忘得差不多啦,现在打算写个笔记,重新去看视频再整理太麻烦,网上竟然找到这一神…
[笔记]机器学习(Machine Learning) - 02.逻辑回归(Logistic Regression)
逻辑回归算法是分类算法,虽然这个算法的名字中出现了"回归",但逻辑回归算法实际上是一种分类算法,我们将它作为分类算法使用.. 分类问题:对于每个样本,判断它属于N个类中的那个类或哪几个类.通常我们判定一个样本,若我们预测它的确属于这个类的可能性大于50%,则认为它属于这个类.当然具体选择50%还是70%还是其他要看具体情况,这里先默认50%. 线性回归的局限性在分类问题的例子中变得不可靠:这是一个用来预测肿瘤是否呈阴性的模型,当一个肿瘤的尺寸大于一个数,我们就认为这个肿瘤呈阴性.我们现…
【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比和解释.那我根据以前读的书和论文,还有和与导师之间的交流,尝试着说一说这几者的区别吧,毕竟一个好的定义在未来的学习和交流中能够发挥很大的作用.同时补上数据科学和商业分析之间的关系.能力有限,如有疏漏,请包涵和指正. 导论…
机器学习(Machine Learning)&深度学习(Deep Learning)资料
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新.本文更新至2014-12-21 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面.从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep L…
【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
[重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .…