在此前的两篇博客中所介绍的两个论文,分别介绍了encoder-decoder框架以及引入attention之后在Image Caption任务上的应用. 这篇博客所介绍的文章所考虑的是生成caption时的与视觉信息无关的词的问题,如"the"."of"这些词其实和图片内容是没什么关系的:而且,有些貌似需要视觉特征来生成的词,其实也可以直接通过语言模型来预测出来,例如"taking on a cell"后生成"phone".…
在上一篇博客中介绍的论文"Show and tell"所提出的NIC模型采用的是最"简单"的encoder-decoder框架,模型上没有什么新花样,使用CNN提取图像特征,将Softmax层之前的那一层vector作为encoder端的输出并送入decoder中,使用LSTM对其解码并生成句子.模型非常直观,而且比常规的encoder-decoder框架还要简单一点(图像特征只在开始时刻输入了decoder,此后就不输入了),但是训练的过程非常讲究,因此取得了20…
斯坦福大学人工智能实验室李飞飞教授,实现人工智能3要素:语法(syntax).语义(semantics).推理(inference).语言.视觉.通过语法(语言语法解析.视觉三维结构解析)和语义(语言语义.视觉特体动作含义)作模型输入训练数据,实现推理能力,训练学习能力应用到工作,从新数据推断结论.<The Syntax,Semantics and Inference Mechanism in Natureal Language> http://www.aaai.org/Papers/Symp…