opencv构建高斯卷积核】的更多相关文章

关于高斯核函数可以参见阮一峰老师的日志:高斯模糊的算法 如何使用高斯核进行高斯模糊可以参见我的另一篇日志:opencv构建自定义卷积 Mat Gaussian_kernal(int kernel_size, int sigma) { const double PI = 3.14159265358979323846; ; Mat kernel(kernel_size, kernel_size, CV_32FC1); * sigma*sigma; ; i < kernel_size; i++) {…
假设一个列数为W,行数为H的高斯卷计算子gaussKernel,其中W,H均为奇数,描点位置在((H-1)/2 ,(W-1)/2),构建高斯卷积核的步骤如下 1.计算高斯矩阵 \[gaussMatrix_(H*W) = [gauss(r,c,\sigma)] (0\leqslant r \leqslant H-1,0\leqslant c\leqslant W-1 ) \] 2.计算高斯矩阵的和 \[sum(gaussMatrix_(H*W)) \] 3.高斯矩阵除以其本身的和,也就是归一化 \…
OpenCV混合高斯模型函数注释说明 一.cvaux.h #define CV_BGFG_MOG_MAX_NGAUSSIANS 500 //高斯背景检测算法的默认参数设置 #define CV_BGFG_MOG_BACKGROUND_THRESHOLD 0.7 //高斯分布权重之和阈值 #define CV_BGFG_MOG_STD_THRESHOLD 2.5 //λ=2.5(99%) #define CV_BGFG_MOG_WINDOW_SIZE 200 //学习率α=1/win_size #…
高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,在图像处理的降噪.平滑中应用较多,特别是对抑制或消除服从正态分布的噪声非常有效. 高斯滤波的过程其实就是对整幅图像进行加权平均操作的过程.滤波后图像上每一个像素的灰度值大小,由其本身和邻域内的其他像素共同决定.具体实现是:用一个大小为(2*N+1)的模板(或称卷积核.掩模)依次扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度替代模板中心像素点的灰度值. 一维.二维高斯分布 一维高斯函数表述为: 对应图形: 二维高斯函数表述为: 对应图形…
#include "stdio.h" #include "string.h" #include "iostream" #include "opencv/cv.h" #include "opencv/cxcore.h" #include "opencv/cvaux.h" #include "opencv/highgui.h" #include "opencv/…
GMM方法概述:基于高斯混合模型期望最大化. 高斯混合模型 (GMM) 高斯分布与概率密度分布 - PDF 初始化 初始化EM模型: Ptr<EM> em_model = EM::create(); em_model->setClustersNumber(numCluster); em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL); em_model->setTermCriteria(TermCriteria(Te…
构建前,记得,一定一定一定要先点击执行qmake:…
http://blog.jasonding.top/2015/04/05/Machine%20Learning/%E3%80%90%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%A7%86%E8%A7%89%E3%80%91%E6%8F%90%E5%8F%96%E8%A7%86%E9%A2%91%E4%B8%AD%E7%9A%84%E5%89%8D%E6%99%AF%E7%89%A9%E4%BD%93/…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice "平滑处理"(smoothing)也称"模糊处理"(bluring),是一项简单且使用频率很高的图像处理方法.平滑处理的用途有很多,最常见的是用来减少图像上的噪点或者失真.在涉及到降低图像分辨率时,平滑处理是非常好用的方法. 图像滤波,就是在尽量保留图像细节特征的条件下对目…
概述 你对智慧城市的想法感到兴奋吗?如果是的话,你会喜欢这个关于建立你自己的车辆检测系统的教程的 在深入实现部分之前,我们将首先了解如何检测视频中的移动目标 我们将使用OpenCV和Python构建自动车辆检测器 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!QQ群:101677771…
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 29 理解图像特征 目标本节我会试着帮你理解什么是图像特征,为什么图像特征很重要,为什么角点很重要等.29.1 解释 我相信你们大多数人都玩过拼图游戏吧.首先你们拿到一张图片的一堆碎片,要做的就是把这些碎片以正确的方式排列起来从而重建这幅图像.问题是,你怎样做到的呢?如果把你做游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了.如果计算机可以玩拼图,我们就可以给计算机一大堆自然图片,然后就可以让计算机把它拼成一张大图…
部分 IX计算摄影学 OpenCV-Python 中文教程(搬运)目录 49 图像去噪目标 • 学习使用非局部平均值去噪算法去除图像中的噪音 • 学习函数 cv2.fastNlMeansDenoising(),cv2.fastNlMeansDenoisingColored()等原理 在前面的章节中我们已经学习了很多图像平滑技术,比如高斯平滑,中值平滑等,当噪声比较小时这些技术的效果都是很好的.在这些技术中我们选取像素周围一个小的邻域然后用高斯平均值或者中值平均值取代中心像素.简单来说,像素级别的…
本文为原创作品,未经本人同意,禁止转载 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing/ 或许网络上有各位牛人已经对sift算法进行各种的详解和说明,我(小菜鸟)在翻阅各种资料和对opencv中的代码进行反推之后,终于理解该算法.并记录之,供大家一起交流学习!这个博文主要记录了我的学习历程,或许对你有帮助,或许可以启发你,或许你只是一笑而过!没关系,至少自己总结过. 这篇文章主要是对sif…
http://blog.csdn.net/xiaowei_cqu/article/details/8069548 SIFT简介 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(<Object Recognition from Local Scale-Invariant Features>)提出的高效区域检测算法,在2004年(<Distinctive Image Features from Scal…
SIFT(Scale-Invariant Feature Transform,尺度不变特征转换)在目标识别.图像配准领域具有广泛的应用,下面按照SIFT特征的算法流程对其进行简要介绍对SIFT特征做简要介绍. 高斯金字塔是SIFT特征提取的第一步,之后特征空间中极值点的确定,都是基于高斯金字塔,因此SIFT特征学习的第一步是如何建立的高斯金字塔. 明白几个定义: 高斯金字塔 对于高斯金字塔,很容易直观地理解为对同一尺寸的图像,然后进行不同程度的高斯平滑,这些图像构成高斯金字塔,这种是不对的,这描…
原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论   自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形容建筑物用“米”,观测分子.原子等用“纳米”.更形象的例子比如Google地图,滑动鼠标轮可以改变观测地图的尺度,看到的地图绘制也不同:还有电影中的拉伸镜头等等…… 尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目标由近到远时目标在视网膜上的形成过程.尺度越大图像越模糊.   为什么要讨论…
图像金字塔技术在很多层面上都有着广泛的应用,很多开源的工具也都有对他们的建立写了专门的函数,比如IPP,比如OpenCV等等,这方面的理论文章特别多,我不需要赘述,但是我发现大部多分开源的代码的实现都不是严格意义上的金字塔,而是做了一定的变通,这种变通常常为了快捷的实现类似的效果,虽然这种变通不太会影响金字塔的效果,但是我这里希望从严格意义上对该算法进行优化,比如简要贴一下下面的某个高斯金字塔的代码: public static Mat[] build(Mat img, int level) {…
初学OpenCV的开发者很容易被OpenCV中各种滤波方法所困扰,不知道到底该用哪里一个来做滤波.表面原因看起来是因为OpenCV中各种滤波方式实在是太多太杂, 其背后原因是对各种滤波方法的应用场景认知出现了问题,所以这里小编从应用场景与项目中解决问题的实际出发,跟大家一起探讨一下各种滤波方法. 一:模糊函数blur   参数说明   -参数InputArray表示输入图像Mat对象 -参数OutputArray表示模糊之后输出Mat对象 -参数Size表示卷积核大小,此参数决定模糊程度,Siz…
openCV主体分为5个模块: CV图像处理函数和计算机视觉算法: ML机器学习库,包含许多聚类和数据分析函数: HighGUI图像和视频的输入输出: [分成三部分:硬件部分--摄像机;文件部分--载入并保存图像文件;图形用户界面部分--打开窗口并且图像显示在窗口中(为窗口加入鼠标或键盘响应) ] CXCore一些基本数据结构和相关函数: CvAux一些被淘汰的算法和函数,或者一些新的实验性的算法和函数.(CVCAM摄像机接口) 细说HighGUI 1.创建窗口,载入.显示图像 cvNamedW…
前面我们对sift算法的流程进行简要研究,那么在OpenCV中,sift是如何被调用的?又是如何被实现出来的了? 特别是到了3.0以后,OpenCV对特征点提取这个方面进行了系统重构,那么整个代码结构变成了什么模样? 在代码中 可以看出目前的结构是基于hess的算法进行的重构.那么首先需要解决的是整体的调用和实现结构问题,然后是hess算法的结构问题,再然后才是具体的算法.需要做的事情很多,一起来研究. 一.OpenCV中sift调用接口和例子     首先是一定要编译使用contrib版本的O…
SIFT简介 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(<Object Recognition from Local Scale-Invariant Features>)提出的高效区域检测算法,在2004年(<Distinctive Image Features from Scale-Invariant Keypoints>)得以完善. SIFT特征对旋转.尺度缩放.亮度变化等保持不变性…
在Opencv中有个Viz模块,可以显示三维物体,还可以实现三维动画,本来是很好的东东,但是里面的函数.类的说明太过简单,始终不得要领.不过其中一个扩展功能非常好,就是你可以在vtk中设计自己的模型类,在Opencv中的Viz3d窗口中显示. 在这里我用vtk中的vtkSurfaceReconstructionFilter类,这是一个对空间点拟合曲面的函数,重新封装了该函数,创建了自己的类:MySurfaceReconstruction,该类可以直接在Viz中的Viz3d窗口中显示. 本程序中所…
目录 Canny边缘检测算法(基于OpenCV的Java实现) 绪论 Canny边缘检测算法的发展历史 Canny边缘检测算法的处理流程 用高斯滤波器平滑图像 彩色RGB图像转换为灰度图像 一维,二维高斯函数及分布 生成高斯滤波卷积核 单色高斯滤波与彩色高斯滤波 用Sobel等梯度算子计算梯度幅值和方向 梯度 图像灰度值的梯度的简单求法 使用Sobel算子来计算梯度的大小及方向: 对梯度幅值进行非极大值抑制 双阈值检测 抑制孤立低阈值点 Reference Canny边缘检测算法(基于OpenC…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 特征点检测广泛应用到目标匹配,目标跟踪,三维重建等应用中,在进行目标建模时会对图像进行目标特征的提取,常用的有颜色,角点,特征点,轮廓,纹理等特征.而下面学习常用的特征点检测. 总结一下提取特征点的作用: 1,运动目标跟踪 2,物体识别 3,图像配准 4,全景图像拼接 5,三维重建 而一种重要的点…
特征,也称 兴趣点 或 关键点,如下:蓝框内区域平坦,无特征:黑框内有"边缘",红框内有"角点",后二者都可视为"特征" 角点作为一种特征,它具有旋转不变性,如下:当图像旋转时,代表角点响应函数 R 的特征椭圆,其形状保持不变 但是,角点不具有尺度不变性,如下:左图中被检测为角点的特征,当放大到右图的尺度空间时,则会被检测为 边缘 或 曲线 下面介绍几种具有尺度不变性的特征检测算法,如 SIFT.SURF.ORB.BRISK.KAZE 和 AKA…
参考:https://www.pyimagesearch.com/2016/10/24/ubuntu-16-04-how-to-install-opencv/ 步骤# 1:安装opencv的依赖项 本教程中的大部分(实际上全部)步骤将通过使用您的终端来完成. 首先,打开命令行并更新apt-get软件包管理器以刷新和升级以及预先安装的软件包/库: sudo apt-get update sudo apt-get upgrade 接下来,让我们安装一些开发者工具: sudo apt-get inst…
主要是参考这里,写的很好PyTorch 入门实战(四)--利用Torch.nn构建卷积神经网络 卷积层nn.Con2d() 常用参数 in_channels:输入通道数 out_channels:输出通道数 kernel_size:滤波器(卷积核)大小,宽和高相等的卷积核可以用一个数字表示,例如kernel_size=3;否则用不同数字表示,例如kernel_size=(5,3) stride : 表示滤波器滑动的步长 padding:是否进行零填充,padding=0表示四周不进行零填充,pa…
使用CMake可以生成OpenCV源码的解决方案,然后就可以对OpenCV函数进行修改,功能剪切等操作了,对这部分内容感兴趣的可以浏览一下上一篇文章:CMake生成OpenCV解决方案&&编译OpenCV源码 自己修改过的函数实现可能有Bug,或者我们想跟踪查看DLL被别的程序调用时候的运行情况,这个时候就可以用到VS编译器的一个调试功能-"附加到进程". 例如对于OpenCV的高斯滤波函数GaussianBlur,它的位置在moudles->opencv_img…
转载自: http://blog.csdn.net/abcjennifer/article/details/7639681 SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度…
SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果.整个算法分为以下几个部分: 1. 构建尺度空间 这是一个初始化操作,尺度空间…