贝叶斯来理解高斯混合模型GMM】的更多相关文章

最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉.本文将GMM用于聚类来举例. 除了简单的高斯分布,理论上通过组合多个不同的高斯分布可以构成任意复杂的分布函数.如下图所示: 在最大似然,贝叶斯方法与朴素贝叶斯分类中,2.1中提到高斯概率密度用来计算连续变量情况下的朴素贝叶斯概率.该情况下的高斯分布是训练已知,然后对于输入变量求取其概率密度,结合类别的先验概率…
遵循统一的机器学习框架理解高斯混合模型(GMM) 一.前言 我的博客仅记录我的观点和思考过程.欢迎大家指出我思考的盲点,更希望大家能有自己的理解. 本文参考了网络上诸多资料,特别是B站UPshuhuai008的视频,讲解东西也是我最喜欢的方式:从多个角度阐述和理解问题. 二.理解 统一的机器学习框架(MLA): 1.模型(Model) 2.策略(Loss) 3.算法(Algorithm) Model 题外话:所谓模型,就是建模的过程,也是我们对现实(已观测)的一种假设,比如前几篇介绍SVM,LR…
EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{1}\right)$转换为更加易于计算的$\sum_{i=1}^{n} \ln p\left(x_{i}, \theta_{2} | \theta_{1}\right)$,其中$\theta_2$可以取任意的先验分布$q(\theta_2)$.EM算法的推导过程如下:$$\begin{aligned…
1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模型)带惩罚项的详细代码实现. 2. 原理 由于我们的极大似然公式加上了惩罚项,所以整个推算的过程在几个地方需要修改下. 在带penality的GMM中,我们假设协方差是一个对角矩阵,这样的话,我们计算高斯密度函数的时候,只需要把样本各个维度与对应的\(\mu_k\)和\(\sigma_k\)计算一维…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和GMM模型进行了介绍,本文我们通过对GMM增加一个惩罚项. 2. 不带惩罚项的GMM 原始的GMM的密度函数是 \[ p(\boldsymbol{x}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma})=\sum_{k=1}^K\pi_k\ma…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM的前3篇博文分别从数学基础.EM通用算法原理.EM的高斯混合模型的角度介绍了EM算法.按照惯例,本文要对EM算法进行更进一步的探究.就是动手去实践她. 2. GMM实现 我的实现逻辑基本按照GMM算法流程中的方式实现.需要全部可运行代码,请移步我的github. 输入:观测数据\(x_1,x_2,x…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GMM(Gaussian mixture model) 混合高斯模型在机器学习.计算机视觉等领域有着广泛的应用.其典型的应用有概率密度估计.背景建模.聚类等. 2. GMM介绍 高斯混合模型(Gaussian Mixed Model)指的是多个高斯分布函数的线性组合,理论上GMM可以拟合出任意类型的分布…
GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture models, GMM) 高斯混合模型(Gaussian Mixture Model,GMM)是一种软聚类模型. GMM也可以看作是K-means的推广,因为GMM不仅是考虑到了数据分布的均值,也考虑到了协方差.和K-means一样,我们需要提前确定簇的个数. GMM的基本假设为数据是由几个不同的高…
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:      (1)K-means      (2)Latent Dirichlet allocation (LDA)      (3)Bisecting k-means(二分k均值算法)      (4)Gaussian Mixture Model (GMM).        基于RDD API的MLLib中,共有六种聚类方法:      (1)K-means      (2)Gaussian mixture  …
本文将涉及到用 EM 算法来求解 GMM 模型,文中会涉及几个统计学的概念,这里先罗列出来: 方差:用来描述数据的离散或波动程度. \[var(X) =  \frac{\sum_{i=1}^N( X_i-\bar{X})^2}{N-1}\] 协方差:协方差表示了变量线性相关的方向,取值范围是 $[-\infty, +\infty]$,一般来说协方差为正值,说明一个变量变大另一个变量也变大:取负值说明一个变量变大另一个变量变小,取0说明两个变量没有相关关系. \[cov(X,Y) =  \frac…
之前在学习中遇到高斯混合模型,卡了很长一段时间,在这里记下学习中的一些问题以及解决的方法.希望看到这篇文章的同学们对高斯混合模型能有一些基本的概念.全文不废话,直接上重点. 本文将从以下三个问题详解高斯混合模型: 1.什么是高斯混合模型? 2.高斯混合模型的数学原理? 3.高斯混合模型在MATLAB中如何使用? 一.什么是高斯混合模型? 高斯混合模型,英文全称:Gaussian mixture model,简称GMM.高斯混合模型就是用高斯概率密度函数(二维时也称为:正态分布曲线)精确的量化事物…
http://www.zhihuishi.com/source/2073.html 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型. 对图像背景建立高斯模型的原理及过程:图像灰度直方图反映的是图像中某个灰度值出现的频次,也可以以为是图像灰度概率密度的估计.如果图像所包含的目标区域和背景区域相差比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状,其中一个峰对应于目标,另一个峰对…
GMM方法概述:基于高斯混合模型期望最大化. 高斯混合模型 (GMM) 高斯分布与概率密度分布 - PDF 初始化 初始化EM模型: Ptr<EM> em_model = EM::create(); em_model->setClustersNumber(numCluster); em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL); em_model->setTermCriteria(TermCriteria(Te…
注:本文是对<统计学习方法>EM算法的一个简单总结. 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量.如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了.EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法. 2. EM 算法的一个小例子:三硬币模型 假设有3枚硬币,记作A,B,C.这些硬币的正面出现的概率分别为\(\pi\).\…
查资料的时候看了一个不文明的事情,转载别人的东西而不标注出处,结果原创无人知晓,转载很多人评论~~标注了转载而不说出处这样的人有点可耻! 写在前面: Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster 了,而…
似然函数 常说的概率是指给定参数后,预测即将发生的事件的可能性.拿硬币这个例子来说,我们已知一枚均匀硬币的正反面概率分别是0.5,要预测抛两次硬币,硬币都朝上的概率: H代表Head,表示头朝上 p(HH | pH = 0.5) = 0.5*0.5 = 0.25. 这种写法其实有点误导,后面的这个p其实是作为参数存在的,而不是一个随机变量,因此不能算作是条件概率,更靠谱的写法应该是 p(HH;p=0.5). 而似然概率正好与这个过程相反,我们关注的量不再是事件的发生概率,而是已知发生了某些事件,…
我的入门方式,先从应用现象中,总结规律反推本质.一头扎进理论书籍是不对的. 老外的先进,还是体现在传承方面.没办法,我们竞争压力大,有好东西藏着掖着.大家都苦逼 我最开始是从介绍,有了基本概念,见xxx.知道十大算法,可以开工了.   开源组件入手的,infer.net 例子很经典,讲解细,这也是老外程序员成才快的原因.之前看libusb也是如此,程序员英语不好路是走不远的,我深有体会. 下面简介下基本概念,我是喜欢预测方面所以对机器分类学习感兴趣. 因为人不必要求计算机像人一样.视觉,听觉不是…
EM算法有很多的应用: 最广泛的就是GMM混合高斯模型.聚类.HMM等等. The EM Algorithm 高斯混合模型(Mixtures of Gaussians)和EM算法 EM算法 求最大似然函数估计值的一般步骤: (1)写出似然函数: (2)对似然函数取对数,并整理: (3)求导数,令导数为0,得到似然方程: (4)解似然方程,得到的参数即为所求. 期望最大化算法(EM算法): 优点: 1. 简单稳定: 2. 通过E步骤和M步骤使得期望最大化,是自收敛的分类算法,既不需要事先设定类别也…
华电北风吹 日期:2015/12/12 朴素贝叶斯算法和高斯判别分析一样同属于生成模型.但朴素贝叶斯算法须要特征条件独立性如果,即样本各个特征之间相互独立. 一.朴素贝叶斯模型 朴素贝叶斯算法通过训练数据集学习联合概率分布p(x,y),其中x=(x1,x2,...,xn)∈Rn,y∈R.详细的对于K分类问题就是须要学习一个类别的先验概率分布p(y=ck),k=1,2,...,K和每一个类别下的条件概率分布(如式1-1) p(x|y)=p(x1,x2,...,xn|y)(1-1) 因为朴素贝叶斯算…
复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函数. 而累计分布函数是概率分布函数的积分. 注意区分 从数学上看,累计分布函数F(x)=P(X<x),表示随机变量X的值小于x的概率.这个意义很容易理解. 概率密度f(x)是F(x)在x处的关于x的一阶导数,即变化率.如果在某一x附近取非常小的一个邻域Δx,那么,随机变量X落在(x, x+Δx)内的…
提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一些非常有用的性质.所以高斯混合模型被广泛地使用. GMM与kmeans相似,也是属于clustering,不同的是.kmeans是把每一个样本点聚到当中一个cluster,而GMM是给出这些样本点到每一个cluster的概率.每一个component就是一个聚类中心. GMM(Gaussian Mi…
目前在研究Automated Machine Learning,其中有一个子领域是实现网络超参数自动化搜索,而常见的搜索方法有Grid Search.Random Search以及贝叶斯优化搜索.前两者很好理解,这里不会详细介绍.本文将主要解释什么是体统(沉迷延禧攻略2333),不对应该解释到底什么是贝叶斯优化. I Grid Search & Random Search 我们都知道神经网络训练是由许多超参数决定的,例如网络深度,学习率,卷积核大小等等.所以为了找到一个最好的超参数组合,最直观的…
(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法.   而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一…
高斯混合模型(GMM)参数优化及实现 (< xmlnamespace prefix ="st1" ns ="urn:schemas-microsoft-com:office:smarttags" />2010-11-13) 1 高斯混合模型概述< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" /> 高斯密度函…
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9285001 该系列笔记1-5pdf下载请猛击这里. 本篇博客为斯坦福ML公开课第五个视频的笔记,主要内容包括生成学习算法(generate learning algorithm).高斯判别分析(Gaussian DiscriminantAnalysis,GDA).朴素贝叶斯(Navie Bayes).拉普拉斯平滑(Laplace Smoothing).…
参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/06/08/3127490.html 首先,简单比较一下前几节课讲的判别学习算法(Discriminative Learning Algorithm)和本节课讲的生成学习算法(Generative Learning Algorithm)的区别. eg:问题:Consider a classificat…
有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”: 能够说明它两面都是“花”吗? 1 贝叶斯推断 按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是: 但是抛三次实在太少了,完全有可能是运气问题.我们应该怎么办? 托马斯·贝叶斯(1702-1761),18世纪英国数学家,1742年成为英国皇家学会会员. 贝叶斯认为在实验之前,应根据不同的情况对硬币有所假设.不同的假设会得到不同的推断. 比如和滑不溜手的韦小宝玩.韦小宝可能拿出各种做过手脚的硬币,让我们猜不透,只能假设对硬…
import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from sklearn.model_selection import train_test_split # 加载 scikit-learn 自带的 digits 数据集 def load_data(): ''' 加载用于分类问题的数据集.这里使用 scikit-learn 自带的 digits 数据集 ''' digits=datasets.load…
贝叶斯.概率分布与机器学习 转自:http://www.cnblogs.com/LeftNotEasy/archive/2010/09/27/1837163.html  本文由LeftNotEasy原创,可以转载,但请保留出处和此行,如果有商业用途,请联系作者 wheeleast@gmail.com 一. 简单的说贝叶斯定理: 贝叶斯定理用数学的方法来解释生活中大家都知道的常识 形式最简单的定理往往是最好的定理,比如说中心极限定理,这样的定理往往会成为某一个领域的理论基础.机器学习的各种算法中使…
从几何上讲,单高斯分布模型在二维空间应该近似于椭圆,在三维空间上近似于椭球.遗憾的是在很多分类问题中,属于同一类别的样本点并不满足“椭圆”分布的特性.这就引入了高斯混合模型.——可以认为是基本假设! 高斯混合模型Gaussian Mixture Model (GMM) 摘自:http://www.infocool.net/kb/Spark/201609/193351.html 由于本文写的不g够完整详细,给出一个学习链接:       http://www.cnblogs.com/CBDocto…