SVD(Singular Value Decomposition,奇异值分解) 算法优缺点: 优点:简化数据,去除噪声,提高算法结果 缺点:数据的转换可能难于理解 适用数据类型:数值型数据 算法思想: 很多情况下,数据的一小部分包含了数据的绝大部分信息,线性代数中有很多矩阵的分解技术可以将矩阵表示成新的易于处理的形式,不同的方法使用与不同的情况.最常见的就是SVD,SVD将数据分成三个矩阵U(mm),sigma(mn),VT(nn),这里得到的sigma是一个对角阵,其中对角元素为奇异值,并且它…