最短路径算法之一——Floyd算法】的更多相关文章

1.Dijkstra算法 求一个顶点到其它所有顶点的最短路径,是一种按路径长度递增的次序产生最短路径的算法. 算法思想: 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增的次序加入到S中,保证: (1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度 (2)每个顶点对应一个距离值 S中顶点:从V0到此顶点的长度 T中顶点:从V0到此顶点的只包括S中顶点作中间…
一.主要内容: 介绍图论中两大经典问题:最小生成树问题以及最短路径问题,以及给出解决每个问题的两种不同算法. 其中最小生成树问题可参考以下题目: 题目1012:畅通工程 http://ac.jobdu.com/problem.php?pid=1012 题目1017:还是畅通工程 http://ac.jobdu.com/problem.php?pid=1017 题目1024:畅通工程 http://ac.jobdu.com/problem.php?pid=1024 题目1028:继续畅通工程 ht…
Floyd算法 Floyd算法可以用来解决任意两个顶点之间的最短路径问题. 核心公式为: Edge[i][j]=Min{Edge[i][j],Edge[i][k]+Edge[k][j]}. 即通过对i,j两个顶点之间插入顶点后比较路径的大小来进行松弛. 首先我们来定义一个二维数组Edge[MAXN][MAXN]来存储图的信息. 这个图的Edge数组初始化以后为 相当于任意两点之间不允许经过其他点时的距离情况. Code1: //经过1号顶点 ;i<=n;i++) ;j<=n;j++) ]+e[…
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gray; bord…
转自:https://www.cnblogs.com/smile233/p/8303673.html 最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1    ADE:2   ADCE:3   ABCE:3 ②在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径. AE:100   ADE:90   ADCE:60   ABCE:70 ③单源点最短路径问题 问题描述:给定带权有向图G=(V, E)和源点v∈V,求从v到G中其余各顶点的最短路径. 应用实例——计…
弗洛伊德算法是实现最小生成树的一个很精妙的算法,也是求所有顶点至所有顶点的最短路径问题的不二之选.时间复杂度为O(n3),n为顶点数. 精妙之处在于:一个二重初始化,加一个三重循环权值修正,完成了所有顶点至所有顶点的的最短路径计算,代码及其简洁 JS实现: //定义邻接矩阵 let Arr2 = [ [0, 1, 5, 65535, 65535, 65535, 65535, 65535, 65535], [1, 0, 3, 7, 5, 65535, 65535, 65535, 65535], […
1.弗洛伊德算法(Floyd) 弗洛伊算法核心就是三重循环,M [ j ] [ k ] 表示从 j 到 k 的路径,而 i 表示当前 j 到 k 可以借助的点:红色部分表示,如果 j 到 i ,i 到 k 是通的,就将 j 到 k 的值更新为 M[j][i] + M[i][k] 和 M[j][k] 较短的一个. <<; ; i <= n; i++) { ; j <= n; j++) { ; k <= n; k++) { if (j!=k) { M[j][k] = min(M[…
一.最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1    ADE:2   ADCE:3   ABCE:3 ②在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径. AE:100   ADE:90   ADCE:60   ABCE:70 ③单源点最短路径问题 问题描述:给定带权有向图G=(V, E)和源点v∈V,求从v到G中其余各顶点的最短路径. 应用实例——计算机网络传输的问题:怎样找到一种最经济的方式,从一台计算机向网上所有其它计算机发送一条消息. ④每…
最短路径 问题背景:地图上有很多个城市,已知各城市之间距离(或者是所需时间,后面都用距离了),一般问题无外乎就是以下几个: 从某城市到其余所有城市的最短距离[单源最短路径] 所有城市之间相互的最短距离[任意两点最短路径] 各城市距离一致,给出需要最少中转方案 [最少中转] 深度优先搜索 适用范围:啥都不适用,只能处理n<10的情况 深搜求最短路径的思想和用深搜迷宫寻路有一点像,找出所有的从起点到目标点的路径,选出其中最短的一条. 此算法仅供娱乐参考,实际不会用它的,因为算法复杂度是$O(n!)$…
无权单源最短路:直接广搜 void Unweighted ( vertex s) { queue <int> Q; Q.push( S ); while( !Q.empty() ) { V = Q.front(); Q.pop(); for( each W adjacent to V ) { if( dist[W] == -1 ) { dist[W] = dist[V] + 1; path[W] = V; Q.push( W ); } } } } dist[W] = S ---- W of M…