Introduction Apache Spark is a general-purpose cluster computing system to process big data workloads. What sets Spark apart from its predecessors, such as MapReduce, is its speed, ease-of-use, and sophisticated analytics. Apache Spark was originally…
1.sparkML的版本不对应 请参考官网找到对于版本, 比如我的 spark2.3.3          spark MLlib 也是2.3.3…
摘要 在学习使用Spark的过程中,总是想对内部运行过程作深入的了解,其中DEBUG和TRACE级别的日志可以为我们提供详细和有用的信息,那么如何进行合理设置呢,不复杂但也绝不是将一个INFO换为TRACE那么简单. 主要问题 调整Spark日志级别的配置文件是$SPARK_HOME/conf/log4j.properties,默认级别是INFO,如果曾经将其改为DEBUG的朋友可能会有这样的经历,有用的信息还没看完,就被大量的心跳检测日志给淹没了. 解决办法 只将需要的日志级别调整为_TRAC…
未经本人同意严禁转载,徽沪一郎. 概要 在Standalone部署模式下,Spark运行过程中会创建哪些临时性目录及文件,这些临时目录和文件又是在什么时候被清理,本文将就这些问题做深入细致的解答. 从资源使用的方面来看,一个进程运行期间会利用到这四个方面的资源,分别是CPU,内存,磁盘和网络.进程退出之后,CPU,内存和网络都会由操作系统负责释放掉,但是运行过程中产生临时文件如果进程自己不在退出之前有效清除,就会留下一地鸡毛,浪费有效的存储空间. 部署时的第三方依赖 再提出具体的疑问之前,先回顾…
欢迎转载,转载请注明出处. 概要 本文简要介绍如何使用spark-cassandra-connector将json文件导入到cassandra数据库,这是一个使用spark的综合性示例. 前提条件 假设已经阅读技术实战之3,并安装了如下软件 jdk scala sbt cassandra spark-cassandra-connector 实验目的 将存在于json文件中的数据导入到cassandra数据库,目前由cassandra提供的官方工具是json2sstable,由于对cassandr…
欢迎转载,转载请注明出处,徽沪一郎. 概要 前提 假设当前已经安装好如下软件 jdk sbt git scala 安装cassandra 以archlinux为例,使用如下指令来安装cassandra yaourt -S cassandra 启动cassandra cassandra -f 创建keyspace和table, 运行/usr/bin/cqlsh进入cql console,然后执行下述语句创建keyspace和table CREATE KEYSPACE test WITH repli…
欢迎转载,转载请注明出处,徽沪一郎,谢谢. 在流数据的处理过程中,为了保证处理结果的可信度(不能多算,也不能漏算),需要做到对所有的输入数据有且仅有一次处理.在Spark Streaming的处理机制中,不能多算,比较容易理解.那么它又是如何作到即使数据处理结点被重启,在重启之后这些数据也会被再次处理呢? 环境搭建 为了有一个感性的认识,先运行一下简单的Spark Streaming示例.首先确认已经安装了openbsd-netcat. 运行netcat nc -lk 9999 运行spark-…
在这篇文章中我们将讨论如何利用 Apache Spark 来提升 MySQL 的查询性能. 介绍 在我的前一篇文章Apache Spark with MySQL 中介绍了如何利用 Apache Spark 实现数据分析以及如何对大量存放于文本文件的数据进行转换和分析.瓦迪姆还做了一个基准测试用来比较 MySQL 和 Spark with Parquet 柱状格式 (使用空中交通性能数据) 二者的性能. 这个测试非常棒,但如果我们不希望将数据从 MySQL 移到其他的存储系统中,而是继续在已有的…
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession 创建 DataFrames 无类型的Dataset操作 (aka DataFrame 操作) Running SQL Queries Programmatically 全局临时视图 创建Datasets RDD的互操作性 使用反射推断Schema 以编程的方式指定Schema Aggregatio…
今天早上六点半左右微信群里就看到张队发的关于.NET Spark大数据的链接https://devblogs.microsoft.com/dotnet/introducing-net-for-apache-spark/ ,正印证了"微软在不断通过.NET Core补齐各领域开发,真正实现一种语言的跨平台"这句话.那么我们今天就来看看这个 .NET for Apache Spark到底是个什么鬼? 作者:依乐祝 原文链接:https://www.cnblogs.com/yilezhu/p…
跑sparkPis示例程序 [root@node01 bin]# ./spark-submit --master spark://node01:7077 --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.0.0.jar 100 报如下错误的原因可能是分配的任务数过多导致内存不足. 解决办法:减少任务数 19/04/17 04:19:17 WARN NettyRpcEndpointRef…
问题导读 1.在Standalone部署模式下,Spark运行过程中会创建哪些临时性目录及文件? 2.在Standalone部署模式下分为几种模式? 3.在client模式和cluster模式下有什么不同? 概要 在Standalone部署模式下,Spark运行过程中会创建哪些临时性目录及文件,这些临时目录和文件又是在什么时候被清理,本文将就这些问题做深入细致的解答. 从资源使用的方面来看,一个进程运行期间会利用到这四个方面的资源,分别是CPU,内存,磁盘和网络.进程退出之后,CPU,内存和网络…
流失预测是个重要的业务,通过预测哪些客户可能取消对服务的订阅来最大限度地减少客户流失.虽然最初在电信行业使用,但它已经成为银行,互联网服务提供商,保险公司和其他垂直行业的通用业务. 预测过程是大规模数据的驱动,并且经常结合使用先进的机器学习技术.在本篇文章中,我们将看到通常使用的哪些类型客户数据,对数据进行一些初步分析,并生成流失预测模型 - 所有这些都是通过Spark及其机器学习框架来完成的. 使用数据科学更好地理解和预测客户行为是一个迭代过程,其中涉及: 1.发现和模型创建: 分析历史数据.…
pyspark Python3.7环境设置 及py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe解决! 环境设置 JDK: java version "1.8.0_66" Python 3.7 spark-2.3.1-bin-hadoop2.7.tgz 环境变量 export PYSPARK_PYTHON=…
[编者按]时至今日,Spark已成为大数据领域最火的一个开源项目,具备高性能.易于使用等特性.然而作为一个年轻的开源项目,其使用上存在的挑战亦不可为不大,这里为大家分享SciSpike软件架构师Ashwini Kuntamukkala在Dzone上进行的Spark入门总结(虽然有些地方基于的是Spark 1.0版本,但仍然值得阅读)—— Apache Spark:An Engine for Large-Scale Data Processing,由OneAPM工程师翻译. 本文聚焦Apache…
解决方法:https://stackoverflow.com/questions/37442910/spark-shell-startup-errors 异常: 18/01/29 19:04:27 WARN HiveMetaStore: Retrying creating default database after error: Failed to start database 'metastore_db' with class loader org.apache.spark.sql.hive…
public static void main(String[] argsArray) throws Exception { //org.apache.spark.launcher.Main checkArgument(argsArray.length > 0, "Not enough arguments: missing class name."); /**  * java -cp spark_home/lib/spark-assembly-1.6.0-hadoop2.6.0.…
什么是.NET for Apache Spark? 分享一个.NET平台开源免费跨平台的大数据分析框架.NET for Apache Spark for Apache Spark   今天早上六点半左右微信群里就看到张队发的关于.NET Spark大数据的链接https://devblogs.microsoft.com/dotnet/introducing-net-for-apache-spark/ ,正印证了“微软在不断通过.NET Core补齐各领域开发,真正实现一种语言的跨平台”这句话.那…
一,1 在使用spark读取kafka数据时,当spark升级到2.0之后,出现如上问题:之前遇到了,当时在工程里面添加了org.apache.spark.Logging类,能够运行. 但是在后期使用过程中,又遇到了相同的问题,为了一劳永逸,今天彻底把问题解决. 在项目下创建org.apache.spark.logging类 将源码考入类中 package org.apache.sparkimport org.apache.log4j.{LogManager, PropertyConfigura…
今天,在运行Spark SQL代码的时候,遇到了以下错误: Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in stage 50.0 failed 4 times, most recent failure: Lost task 3.3 in stage 50.0 (TID 9204, bjhw-feed-shunyi2513.bjhw.baidu.com, executor…
error:org.apache.spark.shuffle.FetchFailedException: Failed to connect to xxxx/xx.xx.xx.xx:xxxx 定位来定位去与防火墙等无关.反复查看日志: 2019-09-30 11:00:46,521 | WARN | [dispatcher-event-loop-50] | Lost task 5.0 in stage 1.2 (TID 24441, dggsafe0321-cm, executor 7): Ex…
基本用法主要掌握一点就行: master slave模式运用:driver 就是master,executor就是slave. 如果executor要想和driver交互必须拿到driver的EndpointRef,通过driver的EndpointRef来调接口访问. driver启动时,会在driver中注册一个Endpoint服务,并暴露自己的ip和端口.executor端生成driver的EndpointRef,就主要需要两个参数就行:driver的host(ip)和port. 导入Ma…
首先,我的代码是这样的 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object PvCount { def main(args: Array[String]): Unit = { //获取SparkConf val sparkConf = new SparkConf().setMaster("local[2]").setAppName("PV-Count&…
介绍 1.是spark core的扩展,针对实时数据流处理,具有可扩展.高吞吐量.容错. 数据可以是来自于kafka,flume,tcpsocket,使用高级函数(map reduce filter ,join , windows), 处理的数据可以推送到database,hdfs,针对数据流处理可以应用到机器学习和图计算中. 内部,spark接受实时数据流,分成batch(分批次)进行处理,最终在每个batch终产生结果stream. 2.discretized stream or DStre…
Apache Spark简介 Apache Spark是一个高速的通用型计算引擎,用来实现分布式的大规模数据的处理任务. 分布式的处理方式可以使以前单台计算机面对大规模数据时处理不了的情况成为可能. Apache Spark安装及配置(OS X下的Ubuntu虚拟机) 学习新东西最好是在虚拟机下操作,以免对现在的开发环境造成影响,我的系统是OS X,安装的是VirtualBox虚拟机,然后在虚拟机里安装的Ubuntu系统. VirtualBox安装方法请查看教程: YouTube: Instal…
Apache Spark :  https://www.oschina.net/p/spark-project…
Apache Spark源码剖析(全面系统介绍Spark源码,提供分析源码的实用技巧和合理的阅读顺序,充分了解Spark的设计思想和运行机理) 许鹏 著   ISBN 978-7-121-25420-8 2015年3月出版 定价:68.00元 304页 16开 编辑推荐 Spark Contributor,Databricks工程师连城,华为大数据平台开发部部长陈亮,网易杭州研究院副院长汪源,TalkingData首席数据科学家张夏天联袂力荐 1.本书全面.系统地介绍了Spark源码,深入浅出,…
原文地址:http://blog.jobbole.com/?p=89446 我是在2013年底第一次听说Spark,当时我对Scala很感兴趣,而Spark就是使用Scala编写的.一段时间之后,我做了一个有趣的数据科学项目,它试着去 预测在泰坦尼克号上幸存.对于进一步了解Spark内容和编程来说,这被证明是一个很好的方式.对于任何有追求的.正在思考如何着手的Spark开发人员,我都非常推荐这个项目. 今天,Spark已经被很多巨头使用,包括Amazon.eBay以及Yahoo!.很多组织都在拥…
今天在用Spark把Kafka的数据往ES写的时候,代码一直报错,错误信息如下: 15/10/20 17:28:56 ERROR actor.OneForOneStrategy: org.apache.spark.SparkContext java.io.NotSerializableException: org.apache.spark.SparkContext at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java…