What’s up with the Graph Laplacian】的更多相关文章

What's up with the Graph Laplacian? 来源 作者:Jeremy Kun blog: Math ∩ Programming 在数学上图和与图关联的某些矩阵的代数性质有很深的联系. 这儿有一个这种现象的最简单的例子.一个无向图\(G=(V,E)\) 并且\(A=(a_{i,j})\)是它的的邻接矩阵.一个显著的事实是矩阵\(A^k\)的(i, j)项就是从i到j的长度为k的路径的数目. 数学中在图的邻接矩阵上做线性代数研究的领域叫做 spectral graph t…
转自:https://www.kechuang.org/t/84022?page=0&highlight=859356,感谢分享! 在机器学习.多维信号处理等领域,凡涉及到图论的地方,相信小伙伴们总能遇到和拉普拉斯矩阵和其特征值有关的大怪兽.哪怕过了这一关,回想起来也常常一脸懵逼,拉普拉斯矩阵为啥被定义成  ?这玩意为什么冠以拉普拉斯之名?为什么和图论有关的算法如此喜欢用拉普拉斯矩阵和它的特征值? 最近读论文的时候,刚好趁机温习了一下相应的内容,寻本朔源一番,记录下来,希望大家阅读之后,也能够有…
Semi-supervised Classification with Graph Convolutional Networks 2018-01-16  22:33:36 1. 文章主要思想: 2. 代码实现(Pytorch):https://github.com/tkipf/pygcn  [Introduction]: 本文尝试用 GCN 进行半监督的分类,通过引入一个 graph Laplacian regularization term 到损失函数中: 其中,L0 代表损失函数,即:gra…
Laplacian和PCA貌似是同一种性质的方法,坐标系变换.只是拉普拉斯属于图论的范畴,术语更加专业了. 要看就把一篇文章看完整,再看其中有什么值得借鉴的,总结归纳理解后的东西才是属于你的. 问题: 1. 这篇文章有哪些亮点决定他能发NM?单细胞,consensus,较好的表现,包装了一些专业的术语,显得自己很专业,其实真正做的东西很少: 2. consensus方法的本质是什么? 3. 工具的评估准则?ARI,silhouette index 4. SC3的最大缺点是什么?速度太慢,超过10…
小书匠Graph图论 如果只是简单使用nx.draw,是无法定制出自己需要的graph,并且这样的graph内的点坐标的不定的,运行一次变一次,实际中一般是要求固定的位置,这就需要到布局的概念了.详细的画图信息可以看这里,代码中的关键部分使用了英文进行注释,不在另外注释. 目录: 9.Drawing Graph 9.1使用Matplotlib 9.2使用Graphviz AGraph (dot) 9.3图布局 注意:如果代码出现找不库,请返回第一个教程,把库文件导入. 9.Drawing Gra…
论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning> Authors:Jiwoong Park.Minsik Lee.H. Chang.Kyuewang Lee.J. Choi Sources:2019 IEEE/CVF International Conference on Computer Vision (ICCV) Paper:Downlo…
论文信息 论文标题:GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training论文作者:Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang论文来源:2020, KDD论文地址:download论文代码:download 1 Introduction 本文的预训练任务:子图实例判…
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinci 10:30  ARS-L1.1—GROUP STRUCTURED DIRTY DICTIONARY LEARNING FOR CLASSIFICATION Yuanming Suo, Minh Dao, Trac Tran, Johns Hopkins University, USA; Hojj…
网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程组可以得到网格的顶点坐标. 基于网格Laplace形变算法的思想:网格上顶点的Laplace坐标作为网格的细节特征,其在网格形变前后的局部坐标系内不发生变化.Laplace形变问题可以用如下数学优化形式表达,那么问题的关键是如何得到网格形变后的Laplace坐标,或者说是每个顶点Laplace坐标的…
场景: 一个新妈妈给刚出生的宝宝买用品,随着宝宝的长大,不同的阶段需要不同的物品. 这个场景中涉及到考虑用户所处阶段,给用户推荐物品的问题. 如果使用用户协同过滤,则需要根据购买记录,找到与用户处于同一阶段的用户. 不加入分类信息,单纯使用物品信息,则可能因为买了不同牌子的尿布,而判断为非相似用户, 所以加入商品分类信息 算法步骤: 1.   加入分类信息 1)   根据时间将用户交易记录分成若干阶段(比如,近90天,近360天-近90天,...) 2)   对于中的记录(以中的为例),在向量的…