Maximum Likelihood 最大似然估计】的更多相关文章

Maximum Likelihood 最大似然估计 这个算法解决的问题是,当我们知道一组变量的密度分布函数与从总体采样的个体的时候,需要估计函数中的某些变量. 假设概率密度函数如下: 一般来说,为了计算的方便性,我们会采取对数的方式 现在的目标是要使得上面函数取最大值,自变量为Θ,并且可以是一个向量. 求上面函数最大值,需要用到函数的一阶导数,求极值点,最终判断所要求的点. Reference: http://en.wikipedia.org/wiki/Maximum_likelihood…
1.What is Maximum Likelihood? 极大似然是一种找到最可能解释一组观测数据的函数的方法. Maximum Likelihood is a way to find the most likely function to explain a set of observed data. 在基本统计学中,通常给你一个模型来计算概率.例如,你可能被要求找出X大于2的概率,给定如下泊松分布:X ~ Poisson (2.4).在这个例子中,已经给定了你泊松分布的参数 λ(2.4),…
模型已定,参数未知 已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值. 假设模型满足某种总体分布,但是不知道模型的参数,通过样本去估计参数. 最大似然估计提供了一种给定观察数据来评估模型参数的方法,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的…
先不要想其他的,首先要在大脑里形成概念! 最大似然估计是什么意思?呵呵,完全不懂字面意思,似然是个啥啊?其实似然是likelihood的文言翻译,就是可能性的意思,所以Maximum Likelihood可以直接叫做最大可能性估计,这就好理解了,就是要求出最大的可能性(下的那个参数). 一些最基本的概念:总体X,样本x,分布P(x:θ),随机变量(连续.离散),模型参数,联合分布,条件分布 而似然函数在形式上,其实就是样本的联合密度:L(θ)= L(x1,x2,-,xn:θ)= ΠP(xi:θ)…
参考:Fitting a Model by Maximum Likelihood 最大似然估计是用于估计模型参数的,首先我们必须选定一个模型,然后比对有给定的数据集,然后构建一个联合概率函数,因为给定了数据集,所以该函数就是以模型参数为自变量的函数,通过求导我们就能得到使得该函数值(似然值)最大的模型参数了. Maximum-Likelihood Estimation (MLE) is a statistical technique for estimating model parameters…
它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大.极大似然原理的直观想法我们用下面例子说明.设甲箱中有99个白球,1个黑球:乙箱中有1个白球.99个黑球.现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的.一般说来,事件A发生的概…
学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性. 这里我们讨论的范围已经界定了,那就是在指定模型下(比如二项分布),我们观测数据和可能的模型参数之间的关系. (传统的贝叶斯定理的适用范围很广,是高度的总结推广,在似然函数里就不要过于推广了) 似然函数在直觉上就很好理解了,L(…
似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)是一个非常重要的内容,在非正式场合似然和概率(Probability)几乎是一对同义词,但是在统计学中似然和概率却是两个不同的概念.概率是在特定环境下某件事情发生的可能性,也就是结果没有产生之前依据环境所对应的参数来预测某件事情发生的可能性,比如抛硬币,抛之前我们不知道最…
最大似然法,英文名称是Maximum Likelihood Method,在统计中应用很广.这个方法的思想最早由高斯提出来,后来由菲舍加以推广并命名. 最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最 大.通俗一点讲,就是在什么情况下最有可能发生已知的事件.举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知.我 们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出…
[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 极大似然估计 一.最大似然原理 二.极大似然估计 极大似然估计是建立在最大似然原理的基础上的一个统计方法.极大似然估计提供了一种给定观察数据来评估模型参数的方法,即"模型已定,参数未知".通过观察若干次实验的结果,利用实验结果得到某个参数值能够使样本出现的概率最大,则称为极大似然估计. 简…