代码 #include <bits/stdc++.h> #define rin(i,a,b) for(int i=(a);i<=(b);++i) #define irin(i,a,b) for(int i=(a);i>=(a);--i) #define trav(i,a) for(int i=head[(a)];i;i=e[i].nxt) typedef long long LL; using std::cin; using std::cout; using std::endl;…
题目链接:LOJ 题目大意:从前有个积性函数 $f$ 满足 $f(1)=1,f(p^k)=p\oplus k$.(异或)求其前 $n$ 项的和对 $10^9+7$ 取模的值. $1\le n\le 10^{10}$. 这种奇怪但是简洁的积性函数求和,首选 min_25 筛. 首先可以发现,对于质数 $p$,$p\ge 3$ 时 $f(p)=p-1$,$p=2$ 时 $f(p)=p+1$. 所以可以先把 $f(2)$ 看做 $1$,这样方便处理 $g$,最后计算 $S$ 时再加个 $2$ 就好了.…
传送门 省选之前做数论题会不会有Debuff啊 这道题显然是要求\(1\)到\(x\)中所有数第二大质因子的大小之和,如果不存在第二大质因子就是\(0\) 线性筛似乎可以做,但是\(10^{11}\)的数据范围让人望而却步,而杜教筛需要对\(f(x)\)找到一个函数\(g(x)\)做狄利克雷卷积成为一个好算前缀和的函数\(h(x)\),相信各位是找不到这样一个函数的.所以考虑Min_25筛.但用Min_25筛还不知道要筛什么东西,故从Min_25筛最后的计算过程入手. Min_25筛的每一层递归…
min_25 筛是由 min_25 大佬使用后普遍推广的一种新型算法,这个算法能在 \(O({n^{3\over 4}\over log~ n})\) 的复杂度内解决所有的积性函数前缀和求解问题(个人感觉套上素数定理证明的复杂度的话应该要把下面的 log 改成 ln ,不过也差不多啦~) 其实 min_25 筛的入门TXC 大佬的 blog 已经写的非常棒了QVQ 所以搬博客的话鉴于博主太懒了就不干了...直接帮 TXC 大佬安利博客完事 这篇博客主要的目的是证明网上大多没有的 min_25 筛…
先定义几个符号: []:若方括号内为一个值,则向下取整,否则为布尔判断 集合P:素数集合. 题目分析: 题目是一个积性函数.做法之一是洲阁筛,也可以采用Min_25筛. 对于一个可以进行Min_25筛法的积性函数,它需要满足与洲阁筛相同的条件,即: 对于$f(p), p \in P$,它可以多项式表出.对于$f(p^k),p \in P$可以被快速计算出. 这道题中$f(p) = p-1$再对$2$进行修正即可. 对于1的情况我们单独考虑,现在我们对答案进行一些变换. $$\sum_{i=2}^…
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_{n|d}\mu(\frac{d}{n})g(d)\end{aligned}\] 实际上还有 \[\begin{aligned}g(n)&=\sum_{d|n}f(d)\\f(n)&=\sum_{d|n}\mu(\frac{n}{d})g(d)\end{aligned}\] 证明可以看看这里,…
Min_25 筛 yyb好神仙啊 干什么用的 可以在\(O(\frac{n^{\frac 34}}{\log n})\)的时间内求积性函数\(f(x)\)的前缀和. 别问我为什么是这个复杂度 要求\(f(p)\)是一个关于\(p\)的简单多项式,\(f(p^c)\)可以快速计算. 怎么做啊 首先我们需要对每个\(x=\lfloor\frac ni\rfloor\)求出\(\sum_{i=1}^x[i是质数]f(i)\). 怎么求呢? 先线性筛出\(\sqrt n\)范围内的质数,设\(P_j\)…
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1965 考虑 \( \prod_{i=1}^{n}\sigma_0^i \) \(=\prod_{j=1}^{p_j<=n}\prod_{t=1}^{p_j^t<=n}(t+1)^{ p_j^tS(\left\lfloor\frac{n}{p_j^t}\right\rfloor) - p_j^{t+1}S(\left\lfloor\frac{n}{p_j^{t+1}}\rig…
题目链接 https://loj.ac/problem/3069 题解 复数真神奇. 一句话题意:令 \(f(x)\) 表示以原点 \((0, 0)\) 为圆心,半径为 \(x\) 的圆上的整点数量,求 \(\sum_\limits{i = 1}^N f(i)^k \bmod P\) 的值. 令 \(g(x) = \frac{f(x)}{4}\),那么我们需要求 \(\left(4^k\sum_\limits{i = 1}^Ng(i)^k\right) \bmod P\).打表可得 \(g(x)…
题目链接 http://www.51nod.com/Challenge/Problem.html#!#problemId=1965 题解 需要求的式子显然是个二合一形式,我们将其拆开,分别计算 \(\prod_\limits{i = 1}^n \sigma_0(i)^i\) 与 \(\prod_\limits{i = 1}^n \sigma_0(i)^{\mu(i)}\),再将两部分乘起来得到答案. 对于第一部分 \(\prod_\limits{i = 1}^n \sigma_0(i)^i\):…
link \(\sum_{i=1}^n\sum_{j=1}^n\mathrm{sgcd}(i,j)^k=\sum_{p=1}^ns(p)^k\sum_{i=1}^n\sum_{j=1}^n[\gcd(i,j)=p]=\sum_{p=1}^ns(p)^k(-1+2\sum_{i=1}^{n/p}\varphi(i))\) 由于 \(n\) 的范围是 \(10^9\) ,对于后面的我们最多只有根号种取值,根据套路,可以杜教筛/Min_25筛一波. 至于前面的东西,我们可以考虑Min_25筛的过程:…
传送门 思路 也可以算是一个板题了吧qwq 考虑min_25筛最后递归(也就是DP)的过程,要枚举当前最小的质因子是多少. 那么可以分类讨论,考虑现在这个质因子是否就是次大质因子. 如果不是,那么就是\(S(n/p,k+1)\):如果是,那么剩下的必定是一个更大的质数,那么就需要知道一段区间内有多少个质数. 质数个数显然可以min_25筛给搞出来. 于是就做完了. 代码 #include<bits/stdc++.h> clock_t t=clock(); namespace my_std{ u…
分析 首先,STO ywy OTZ,ywy TQL%%%! 说一下这道题用min_25筛怎么做. 容易发现,对于所有质数\(p\),都满足\(f(p)=4\),于是我们就可以直接通过\([1,x]\)内的质数的个数\(h(x)\)来求出\(g(x)=\sum_{i=1}^{x}f(i) \times [i \in prime]\)了,即\(g(x)\)可以等价地表示为\(g(x)=4 \times h(x)\).如何求\(h(x)\)是min_25筛的基本操作就不过多赘述了.而且进一步分析我们可…
前言 本篇文章中使用的字母\(p\),指\(\text{任意的} p \in \text{素数集合}\) 应用场景 若函数\(f(x)\)满足, \(f(x)\)是积性函数 \(f(p)\)可以使用多项式表示. 已知\(f(p)\),要能在常数级的时间内计算\(f(p^x),x \in N^+\). Min_25筛可以在\(\Theta(\frac{n^{\frac{3}{4}}}{log_2n})\)的时间复杂度内计算\(f(x)\)的前缀和 或者说\(\Theta(n ^ {1 - \eps…
目录 1.什么是min_25筛 2.前置知识 2.1.数论函数 2.2.埃拉托色尼筛 2.3.欧拉筛 3.min_25筛 3.1.计算质数贡献 3.2.计算总贡献 3.3.实现 4.例题 4.1.[LOJ]区间素数个数 4.2.[LG P4213]杜教筛 1.什么是min_25筛          min_25 筛和洲阁筛.杜教筛一样,是一种低于线性的用于求积性函数前缀和的筛法.常用 min_25 筛的时间复杂度为\(O(\frac{n^{\frac34}}{\log n})\),而经过优化可以…
min_25筛 由 dalao min_25 发明的筛子,据说时间复杂度是极其优秀的 \(O(\frac {n^{\frac 3 4}} {\log n})\),常数还小. 1. 质数 \(k\) 次方前缀和(基础) 求 \(\sum_{p \leq n}p^k\) 我们考虑一个 \(\rm DP\) 的思路:设 \(g(n,j)\) 为: \[\sum_{i=1}^n[(\sum_{t=1}^j[p_t|i])=0] i^k \] 其实就是不大于 \(n\) 的,且不含有 \(p_1\) ~…
题目大意 给你 \(n,m\),求 \[ \sum_{i=1}^n\sum_{x_1,x_2,\ldots,x_m=1}^i\operatorname{lcm}(\gcd(i,x_1),\gcd(i,x_2),\ldots,\gcd(i,x_m)) \] 对 \({10}^9+7\) 取模. \(nm\leq {10}^9\) 题解 先推一下式子: \[ ans=\sum_{i=1}^n\sum_{x_1,x_2,\ldots,x_m=1}^i\operatorname{lcm}(\gcd(i,…
原文链接https://www.cnblogs.com/zhouzhendong/p/Min-25.html 前置技能 埃氏筛法 整除分块(这里有提到) 本文概要 1. 问题模型 2. Min_25 筛 3. 模板题以及模板代码 问题模型 有一个积性函数 $f$ ,对于所有质数 $p$,$f(p)$ 是关于 $p$ 的多项式,$f(p^k)$ 非常容易计算(不一定是关于 p 的多项式). 求 $$\sum_{i=1}^{n} f(i)$$ $n\leq 10^{10}$ ${\rm Time\…
题目大意 给你 \(n,k\),求 \[ S_k(n)=\sum_{i=1}^n\sigma_0(i^k) \] 对 \(2^{64}\) 取模. 题解 一个min_25筛模板题. 令 \(f(n)=\sigma_0(n^k)\),那么 \(S_k(n)=\sum_{i=1}^nf(i)\),而且 \[ \begin{cases} f(1)&=1\\ f(p)&=k+1\\ f(p^c)&=kc+1 \end{cases} \] 直接上min_25筛就好了. 时间复杂度:\(O(\…
题目描述 记\(sgcd(i,j)\)为\(i,j\)的次大公约数. 给你\(n\),求 \[ \sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k \] 对\(2^{32}\)取模. \(n\leq {10}^9,k\leq 50\) 题解 记\(f(n)\)为\(n\)的次大因数 显然\(sgcd(i,j)=f(gcd(i,j))\) 先推一波式子. \[ \begin{align} &\sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k\\ =&a…
题目描述 给你\(n\),求 \[ \prod_{i=1}^n{\sigma_0(i)}^{i+\mu(i)} \] 对\({10}^{12}+39\)取模. \(\sigma_0(i)\)表示约数个数. 题解 把式子拆成两部分: \[ \prod_{i=1}^n{\sigma_0(i)}^{i+\mu(i)}=\prod_{i=1}^n{\sigma_0(i)}^{i}\prod_{i=1}^n{\sigma_0(i)}^{\mu(i)} \] 先看前面这部分 \[ \begin{align}…
min_25筛 用来干啥? 考虑一个积性函数\(F(x)\),用来快速计算前缀和\[\sum_{i=1}^nF(i)\] 当然,这个积性函数要满足\(F(x),x\in Prime\)可以用多项式表示 同时,\(F(x^k),x\in Prime\)要能够快速计算答案 需要预处理的东西 先不考虑求前缀和的问题,考虑一个积性函数\(F(x)\) 求解\[\sum_{i=1}^n[i\in Prime]F(i)\] 直接求我也会懵逼的,还是找一个函数来算算,假设\(F(x)=x^k\) 那么,求解\…
用途 快速($O(\frac{n^{3/4}}{logn})$)地计算一些函数f的前缀和,以及(作为中间结果的)只计算质数的前缀和 一般要求f(p)是积性函数,$f(p)$是多项式的形式,且$f(p^k)$可以快速计算 做法 首先考虑求出范围内的质数的取值的和 如果有$f(p)=\sum{a_ip^i}$ 那么我们构造$h_i(x)=x^i$,不难发现$h_i$是完全积性的 就是说,把f在质数的时候的式子拆开,然后让它在不是质数的时候也成立 考虑求其中的一个h,接下来设$pri_j$是第j个质数…
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1222.html 题意 给定 $a,b$, 求 $$\sum_{n=a}^b \sum_{i=1}^n \sum_{j=1}^i [{\rm lcm } (i,j) = n]$$ $$a,b\leq 10^{11}$$ $${\rm Time \ Limit } = 6s$$ 题解 本题做法很多. Min_25 筛 先差分一下,转化成求前缀和. 先把原题的统计无序数对转化成统计有序数对,最终 $an…
看了网上众多博客后,我才发现,实现min_25只有脑子,没有代码. 当然可能是我太ruo了. min_25是一种想法,不是算法. 不要尝试套模板,因为很多题目并没有什么用. 最重要的一点,g不要看成是函数,而是埃式筛第j轮后的剩下的数的F之和:S看成dp来做,也不要记忆化. 1.求[1,n]中素数个数.n≤1E11 #include<bits/stdc++.h> using namespace std; typedef long long int ll; ; ll n,prime[maxn],…
Min_25 筛这个东西,完全理解花了我很长的时间,所以写点东西来记录一些自己的理解. 它能做什么 对于某个数论函数 \(f\),如果满足以下几个条件,那么它就可以用 Min_25 筛来快速求出这个函数的前缀和. 它是一个积性函数 对于一个质数 \(p\) ,\(f(p)\) 的表达式必须是一个项数比较小的多项式.即 \(\displaystyle f(p) = \sum a_ip^{b_i}\). 对于一个质数 \(p\) ,\(f(p^k)\) 的表达式必须可以由 \(f(p)\) 快速得到…
BZOJ 洛谷 不得不再次吐槽洛谷数据好水(连\(n=0,2^{31}-1\)都没有). \(Description\) 给定\(n\),分别求\[\sum_{i=1}^n\varphi(i),\quad\sum_{i=1}^n\mu(i)\] \(n\lt2^{31}\). \(Solution\) \(\varphi(p)=p-1,\quad\mu(p)=-1\) 令\(g(i)\)表示\(1\sim i\)的质数和,\(h(i)\)表示\(1\sim i\)的质数个数,那么\(\varph…
题目链接 \(Description\) 给定\(n\),求\(1\sim n\)中的素数个数. \(2\leq n\leq10^{11}\). \(Solution\) Min_25筛.只需要求出\(g(n,|P|)\). 跑的好慢啊QAQ //5283ms 11.62M #include <cmath> #include <cstdio> #include <algorithm> typedef long long LL; const int N=317000<…
题目链接 Min_25筛见这里: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushuyu/p/9187319.html https://www.cnblogs.com/SovietPower/p/10101811.html \(Description\) 给定\(n\),求积性函数\(f(p^c)=p\oplus c\)的前缀和.\(\oplus\)表示异或运算. \(n\leq 10^{10}…
关于min_25筛的一些理解 如果想看如何筛个普通积性函数啥的,就别往下看了,下面没有的(QwQ). 下文中,所有的\(p\)都代表质数,\(P\)代表质数集合. 注意下文中定义的最小/最大质因子都是默认所有质因子本质不同. 即\(2*2*3*4*5*5\)的最小/次小质因子都是\(2\),最大/次大质因子都是\(5\). step1. 适用条件与思想 min_25筛用于求积性函数前缀和,即\(\sum_{i=1}^n f(i)\) . min_25筛相比于传统筛法来说(如莫比乌斯反演.杜教筛)…