小样本学习Few-shot learning】的更多相关文章

1,概述 目前有效的文本分类方法都是建立在具有大量的标签数据下的有监督学习,例如常见的textcnn,textrnn等,但是在很多场景下的文本分类是无法提供这么多训练数据的,比如对话场景下的意图识别,这个时候如果我们还以传统的深度学习模型+softmax的形式来分类的话,是极容易陷入过拟合的状态.因此就有很多人研究在少量样本下如何建模.one-shot learning,few-shot learning,甚至是zero-shot learning都是旨在解决这类的问题. 本篇博客将会介绍下几种…
One-shot learning Zero-shot learning Multi-shot learning Sparse Fine-grained Fine-tune 背景:CVPR 2018收录了4篇关于小样本学习的论文,而到了CVPR 2019,这一数量激增到了近20篇 那么什么是小样本学习呢? 在机器学习里面,训练时你有很多的样本可供训练,而如果测试集和你的训练集不一样,那么这时候称为支持集support data.在测试时,你会面对新的类别(通常为 5 类),其中每个类别仅有极少量…
目录 原文链接: 小样本学习与智能前沿 01 Multitask Learning 01.1 Parameter Sharing 01.2 Parameter Tying. 02 Embedding Learning 02.1 Task-Specific Embedding Model. 02.2 Task-Invariant Embedding Model. 02.3 Hybrid Embedding Model. 03 Learning with External Memory 03.1 R…
目录 原文链接:小样本学习与智能前沿 01 Transforming Samples from Dtrain 02 Transforming Samples from a Weakly Labeled or Unlabeled Data Set 03 Transforming Samples from Similar Data Sets Discussion and Summary 原文链接:小样本学习与智能前沿 上一篇:A Survey on Few-Shot Learning | Intro…
目录 01 Introduction Bridging this gap between AI and humans is an important direction. FSL can also help relieve the burden of collecting large-scale supervised data. Driven by the academic goal for AI to approach humans and the industrial demand for…
Multi-attention Network for One Shot Learning 2018-05-15 22:35:50  本文的贡献点在于: 1. 表明类别标签信息对 one shot learning 可以提供帮助,并且设计一种方法来挖掘该信息: 2. 提出一种 attention network 来产生 attention maps  for creating the image representation of an exemplar image in novel class…
目录 元学习(Meta-learning) 元学习被用在了哪些地方? Few-Shot Learning(小样本学习) 最近的元学习方法如何工作 Model-Agnostic Meta-Learning (MAML) 元学习(Meta-learning) 智能的一个关键方面是多功能性--做许多不同事情的能力.当前的AI系统可以做到精通于某一项技能,但是,如果我们要求AI系统执行各种看似简单的问题(用同一个模型去解决不同问题),它将会变得十分困难.相反,人类可以明智地利用以往经验并采取行动以适应各…
多视图学习(multi-view learning) 前期吹牛:今天这一章我们就是来吹牛的,刚开始老板在和我说什么叫多视图学习的时候,我的脑海中是这么理解的:我们在欣赏妹子福利照片的时候,不能只看45度角的吧,要不那样岂不是都是美女了,这还得了.所以我们要看各个角度的照片,打击盗版美女,给大家创建一个真诚的少点欺骗的和谐世界.所以说,多视图学习就是360度,全方位无死角的欣赏(学习)然后得到最接近真实值的判定. 话说那么一天啊,一个人和一个蚂蚁在对话,他们看着一个米饭粒,人说,这个米饭粒胖嘟嘟的…
在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要对每个领域都标定大量训练数据,这将会耗费大量的人力与物力.而没有大量的标注数据,会使得很多与学习相关研究与应用无法开展…
原文地址:http://blog.csdn.net/miscclp/article/details/6339456 在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我 们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要…